Coordinate-free quantization of first-class constrained systems

被引:11
作者
Klauder, JR
Shabanov, SV
机构
[1] UNIV FLORIDA,DEPT MATH,GAINESVILLE,FL 32611
[2] UNIV VALENCIA,DEPT THEORET PHYS,E-46100 BURJASSOT,VALENCIA,SPAIN
关键词
D O I
10.1016/S0370-2693(97)00182-2
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The coordinate-free formulation of canonical quantization, achieved by a flat-space Brownian motion regularization of phase-space path integrals, is extended to a special class of closed first-class constrained systems that is broad enough to include Yang-Mills type theories with an arbitrary compact gauge group. Central to this extension are the use of coherent state path integrals and of Lagrange multiplier integrations that engender projection operators onto the subspace of gauge invariant states. (C) 1997 Published by Elsevier Science B.V.
引用
收藏
页码:116 / 122
页数:7
相关论文
共 16 条
[1]   ON THE CANONICAL APPROACH TO QUANTUM-GRAVITY [J].
ASHTEKAR, A ;
HOROWITZ, GT .
PHYSICAL REVIEW D, 1982, 26 (12) :3342-3353
[2]   OPERATOR ORDERING AND FEYNMAN-RULES IN GAUGE-THEORIES [J].
CHRIST, NH ;
LEE, TD .
PHYSICAL REVIEW D, 1980, 22 (04) :939-958
[3]  
CRAMER H, 1968, STATIONARY RELATED S
[4]  
Dirac P. A. M., 1964, LECT QUANTUM MECH
[5]  
Dirac P. A. M., 1947, PRINCIPLES QUANTUM M, P114
[6]  
Faddeev L.D., 1970, THEOR MATH PHYS, V1, P1
[7]  
Govaerts J., 1991, HAMILTONIAN QUANTIZA
[8]   QUANTIZATION OF NON-ABELIAN GAUGE THEORIES [J].
GRIBOV, VN .
NUCLEAR PHYSICS B, 1978, 139 (1-2) :1-19
[9]   QUANTIZATION IS GEOMETRY, AFTER ALL [J].
KLAUDER, JR .
ANNALS OF PHYSICS, 1988, 188 (01) :120-141
[10]  
KLAUDER JR, 1996, IN PRESS ANN PHYS