Distributed approximating functional approach to the Fokker-Planck equation: Eigenfunction expansion

被引:22
作者
Zhang, DS
Wei, GW
Kouri, DJ
Hoffman, DK
机构
[1] UNIV HOUSTON, DEPT PHYS, HOUSTON, TX 77204 USA
[2] IOWA STATE UNIV SCI & TECHNOL, DEPT CHEM, AMES, IA 50011 USA
[3] IOWA STATE UNIV SCI & TECHNOL, AMES LAB, AMES, IA 50011 USA
关键词
DISCRETE-ORDINATE METHOD; EIGENVALUES; DIFFUSION; PROPAGATION; DYNAMICS; SYSTEM;
D O I
10.1063/1.473520
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The distributed approximating functional method is applied to the solution of the Fokker-Planck equations. The present approach is limited to the standard eigenfunction expansion method. Three typical examples, a Lorentz Fokker-Planck equation, a bistable diffusion model and a Henon-Heiles two-dimensional anharmonic resonating system, are considered in the present numerical testing. All results are in excellent agreement with those of established methods in the field. It is found that the distributed approximating functional method yields the accuracy of a spectral method but with a local method's simplicity and flexibility for the eigenvalue problems arising from the Fokker-Planck equations. (C) 1997 American Institute of Physics.
引用
收藏
页码:5216 / 5224
页数:9
相关论文
共 54 条
[1]   ON RELAXATION OF HARD-SPHERE RAYLEIGH + LORENTZ GAS [J].
ANDERSEN, K ;
SHULER, KE .
JOURNAL OF CHEMICAL PHYSICS, 1964, 40 (03) :633-+
[2]   DISCRETE-ORDINATE METHOD OF SOLUTION OF FOKKER-PLANCK EQUATIONS WITH NONLINEAR COEFFICIENTS [J].
BLACKMORE, R ;
SHIZGAL, B .
PHYSICAL REVIEW A, 1985, 31 (03) :1855-1868
[3]   LOWER AND UPPER-BOUNDS FOR THE EIGENVALUES OF THE FOKKER-PLANCK EQUATION IN DETAILED BALANCE [J].
BRAND, H ;
SCHENZLE, A ;
SCHRODER, G .
PHYSICAL REVIEW A, 1982, 25 (04) :2324-2338
[4]   DIFFUSION IN A BISTABLE POTENTIAL - SYSTEMATIC WKB TREATMENT [J].
CAROLI, B ;
CAROLI, C ;
ROULET, B .
JOURNAL OF STATISTICAL PHYSICS, 1979, 21 (04) :415-437
[5]   DIFFUSION IN A BISTABLE POTENTIAL - THE FUNCTIONAL INTEGRAL APPROACH [J].
CAROLI, B ;
CAROLI, C ;
ROULET, B .
JOURNAL OF STATISTICAL PHYSICS, 1981, 26 (01) :83-111
[6]   Stochastic problems in physics and astronomy [J].
Chandrasekhar, S .
REVIEWS OF MODERN PHYSICS, 1943, 15 (01) :0001-0089
[7]   EXACTNESS OF SEMICLASSICAL BOUND-STATE ENERGIES FOR SUPERSYMMETRIC QUANTUM-MECHANICS [J].
COMTET, A ;
BANDRAUK, AD ;
CAMPBELL, DK .
PHYSICS LETTERS B, 1985, 150 (1-3) :159-162
[8]   EIGENVALUES OF A DIFFUSION PROCESS WITH A CRITICAL-POINT [J].
DEKKER, H ;
VANKAMPEN, NG .
PHYSICS LETTERS A, 1979, 73 (5-6) :374-376
[9]   SUPERSYMMETRY, SHAPE INVARIANCE, AND EXACTLY SOLVABLE POTENTIALS [J].
DUTT, R ;
KHARE, A ;
SUKHATME, UP .
AMERICAN JOURNAL OF PHYSICS, 1988, 56 (02) :163-168
[10]  
Einstein A, 1906, ANN PHYS-BERLIN, V19, P371