Structure of the Complex between Phosphorylated Substrates and the SCF β-TrCP Ubiquitin Ligase Receptor: A Combined NMR, Molecular Modeling, and Docking Approach

被引:9
作者
Evrard-Todeschi, Nathalie [1 ]
Pons, Julien [1 ]
Gharbi-Benarous, Josyane [1 ]
Bertho, Gildas [1 ]
Benarous, Richard [2 ]
Girault, Jean-Pierre [1 ]
机构
[1] Univ Paris 05, Chim & Biochim Pharmacol & Toxicol Lab, CNRS, UMR 8601, F-75006 Paris, France
[2] Cellvir, F-91000 Evry, France
关键词
D O I
10.1021/ci800248u
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The binding of phosphorylated peptides to the receptor plays a major role in many basic cellular processes in a variety of pathological states. Human beta-TrCP is a key component of a recently characterized E3 ubiquitin ligase complex that regulates protein degradation through the ubiquitin-dependent proteasome pathway. Docking studies were carried out to explore the structural requirements for the beta-TrCP substrates. Docking studies were performed on the bound conformation of the phosphorylated peptides determined by NMR, whereas the beta-TrCP structure was derived by X-ray from Protein Data Bank. After the docking calculation, during which the peptides were conformationally restrained, the complex presented herein was analyzed in terms of ligand-protein interactions and properties of contacting surfaces. The structural requirements for phosphorylated substrates in interaction with beta-TrCP were explored and compared with experimental data from TRNOESY and STD NMR results. The analysis revealed that the bend of the peptide structures, which is indispensable for beta-TrCP recognition, aligns two charged phosphate groups and a central hydrophobic group in a favorable arrangement that leads to the burial of the peptide surface in the binding Cleft Upon complexation. Through docking simulations, we have identified different specific binding pockets of beta-TrCP according to the ligand in interaction. These data should be valuable in the rational design of a ligand to be used in therapeutic approaches.
引用
收藏
页码:2350 / 2361
页数:12
相关论文
共 63 条
[1]   SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box [J].
Bai, C ;
Sen, P ;
Hofmann, K ;
Ma, L ;
Goebl, M ;
Harper, JW ;
Elledge, SJ .
CELL, 1996, 86 (02) :263-274
[2]   H-1 AND C-13 ASSIGNMENTS FROM SENSITIVITY-ENHANCED DETECTION OF HETERONUCLEAR MULTIPLE-BOND CONNECTIVITY BY 2D MULTIPLE QUANTUM NMR [J].
BAX, A ;
SUMMERS, MF .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1986, 108 (08) :2093-2094
[3]   NATURAL ABUNDANCE N-15 NMR BY ENHANCED HETERONUCLEAR SPECTROSCOPY [J].
BODENHAUSEN, G ;
RUBEN, DJ .
CHEMICAL PHYSICS LETTERS, 1980, 69 (01) :185-189
[4]   STRUCTURE DETERMINATION OF A TETRASACCHARIDE - TRANSIENT NUCLEAR OVERHAUSER EFFECTS IN THE ROTATING FRAME [J].
BOTHNERBY, AA ;
STEPHENS, RL ;
LEE, JM ;
WARREN, CD ;
JEANLOZ, RW .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1984, 106 (03) :811-813
[5]   COHERENCE TRANSFER BY ISOTROPIC MIXING - APPLICATION TO PROTON CORRELATION SPECTROSCOPY [J].
BRAUNSCHWEILER, L ;
ERNST, RR .
JOURNAL OF MAGNETIC RESONANCE, 1983, 53 (03) :521-528
[6]  
BRUNGER A, 1993, X PLOR MANUAL
[7]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[8]   The ubiquitin-proteasome pathway: on protein death and cell life [J].
Ciechanover, A .
EMBO JOURNAL, 1998, 17 (24) :7151-7160
[9]   THEORY OF THE TIME-DEPENDENT TRANSFERRED NUCLEAR OVERHAUSER EFFECT - APPLICATIONS TO STRUCTURAL-ANALYSIS OF LIGAND PROTEIN COMPLEXES IN SOLUTION [J].
CLORE, GM ;
GRONENBORN, AM .
JOURNAL OF MAGNETIC RESONANCE, 1983, 53 (03) :423-442
[10]   THEORY AND APPLICATIONS OF THE TRANSFERRED NUCLEAR OVERHAUSER EFFECT TO THE STUDY OF THE CONFORMATIONS OF SMALL LIGANDS BOUND TO PROTEINS [J].
CLORE, GM ;
GRONENBORN, AM .
JOURNAL OF MAGNETIC RESONANCE, 1982, 48 (03) :402-417