Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy

被引:1662
作者
Knowles, Joshua D. [1 ]
Corne, David W. [1 ]
机构
[1] Univ Reading, Sch Comp Sci Cybernet & Elect Engn, Reading RG6 6AY, Berks, England
关键词
Genetic algorithms; evolution strategies; multiobjective optimization; test functions; multiobjective performance assessment;
D O I
10.1162/106365600568167
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a simple evolution scheme for multiobjective optimization problems, called the Pareto Archived Evolution Strategy (PAES). We argue that PAES may represent the simplest possible nontrivial algorithm capable of generating diverse solutions in the Pareto optimal set. The algorithm, in its simplest form, is a (1 + 1) evolution strategy employing local search but using a reference archive of previously found solutions in order to identify the approximate dominance ranking of the current and candidate solution vectors. (1 + 1)-PAES is intended to be a baseline approach against which more involved methods may be compared. It may also serve well in some real-world applications when local search seems superior to or competitive with population-based methods. We introduce (1 + lambda) and (mu + lambda) variants of PAES as extensions to the basic algorithm. Six variants of PAES are compared to variants of the Niched Pareto Genetic Algorithm and the Nondominated Sorting Genetic Algorithm over a diverse suite of six test functions. Results are analyzed and presented using techniques that reduce the attainment surfaces generated from several optimization runs into a set of univariate distributions. This allows standard statistical analysis to be carried out for comparative purposes. Our results provide strong evidence that PAES performs consistently well on a range of multiobjective optimization tasks.
引用
收藏
页码:149 / 172
页数:24
相关论文
共 25 条
  • [1] [Anonymous], 1997, P 13 INT C MULT CRIT
  • [2] [Anonymous], SOFT COMPUTING ENG D
  • [3] [Anonymous], 1994, P 1 IEEE C EV COMP I
  • [4] [Anonymous], PARALLEL PROBLEM SOL
  • [5] Back T, 1996, EVOLUTIONARY ALGORIT
  • [6] Czyzak P., 1998, J MULTICRITERIA DECI, V7, P34, DOI DOI 10.1002/(SICI)1099-1360(199801)7:1<34::AID-MCDA161>3.0.CO
  • [7] 2-6
  • [8] Finkel R. A., 1974, Acta Informatica, V4, P1, DOI 10.1007/BF00288933
  • [9] An Overview of Evolutionary Algorithms in Multiobjective Optimization
    Fonseca, Carlos M.
    Fleming, Peter J.
    [J]. EVOLUTIONARY COMPUTATION, 1995, 3 (01) : 1 - 16
  • [10] Gandibleux X., 1997, LECT NOTES EC MATH S, P291