Half-space Green's functions for transversely isotropic piezoelectric solids

被引:31
作者
Dunn, ML [1 ]
Wienecke, HA [1 ]
机构
[1] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA
来源
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME | 1999年 / 66卷 / 03期
关键词
D O I
10.1115/1.2791548
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We obtain explicit closed-Sonn solutions for the half-space Green's functions for a transversely isotropic piezoelectric solid. The boundary of the half-space is taken to be a plane normal to the unique material axis. The Green's functions are obtained using a formulation where general solutions in transversely isotropic piezoelectricity are expressed in terms of two potential functions; one satisfying a weighted triharmonic equation and the other satisfying a weighted harmonic equation. By assuming a series solution for the potentials Lye derive explicit expressions for the Green's functions.
引用
收藏
页码:675 / 679
页数:5
相关论文
共 25 条
[1]  
BACON DJ, 1978, PROG MATER SCI, V23, P51
[2]   THE DETERMINATION OF THE ELASTIC AND ELECTRIC-FIELDS IN A PIEZOELECTRIC INHOMOGENEITY [J].
BENVENISTE, Y .
JOURNAL OF APPLIED PHYSICS, 1992, 72 (03) :1086-1095
[3]   GREEN-FUNCTIONS AND THE NONUNIFORM TRANSFORMATION PROBLEM IN A PIEZOELECTRIC MEDIUM [J].
CHEN, TY .
MECHANICS RESEARCH COMMUNICATIONS, 1993, 20 (03) :271-278
[4]   NUMERICAL EVALUATION OF DERIVATIVES OF THE ANISOTROPIC PIEZOELECTRIC GREEN-FUNCTIONS [J].
CHEN, TY ;
LIN, FZ .
MECHANICS RESEARCH COMMUNICATIONS, 1993, 20 (06) :501-506
[5]  
DEEG WF, 1980, THESIS STANFORD U ST
[6]  
Ding HJ, 1996, INT J SOLIDS STRUCT, V33, P2283, DOI 10.1016/0020-7683(95)00152-2
[7]   Inclusions and inhomogeneities in transversely isotropic piezoelectric solids [J].
Dunn, ML ;
Wienecke, HA .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1997, 34 (27) :3571-3582
[9]   Green's functions for transversely isotropic piezoelectric solids [J].
Dunn, ML ;
Wienecke, HA .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1996, 33 (30) :4571-4581
[10]   THE DETERMINATION OF THE ELASTIC FIELD OF AN ELLIPSOIDAL INCLUSION, AND RELATED PROBLEMS [J].
ESHELBY, JD .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1957, 241 (1226) :376-396