Probing the mechanism of amyloidogenesis through a tandem repeat of the PI3-SH3 domain suggests a generic model for protein aggregation and fibril formation

被引:86
作者
Bader, R
Bamford, R
Zurdo, J
Luisi, BF
Dobson, CM
机构
[1] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
[2] Univ Cambridge, Dept Biochem, Cambridge CB2 1GA, England
基金
英国惠康基金;
关键词
amyloid fibrils; assembly mechanism; nucleation; protofibrils; PI3-SH3; domain;
D O I
10.1016/j.jmb.2005.11.034
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Aggregation of the SH3 domain of the PI3 kinase, both as a single domain and as a tandem repeat in which the C terminus of one domain is linked to the N terminus of another by a flexible linker of ten glycine/serine residues, has been studied under a range of conditions in order to investigate the mechanism of protein aggregation and amyloid formation. The tandem repeat was found to form amyloid fibrils much more readily than the single domain under the acidic conditions used here, and the fibrils themselves have higher morphological homogeneity The folding-unfolding transition of the PI3-SH3 domain shows two-state behaviour and is pH dependent; at pH 3.6, which is near the pH mid-point for folding and only slightly below the isoelectric point of the protein, both the single domain and the tandem repeat spontaneously form broad distributions of soluble oligomers without requirement for nucleation. Under prolonged incubation under these conditions, the oligomers convert into thin, curly fibrils that interact with thioflavin-T, suggesting that they contain an organised beta-sheet structure. Under more acidic conditions (pH 2.0) where the proteins are fully denatured and carry a positive net charge, long, straight fibrils are formed in a process having a pronounced lag phase. The latter was found to be reduced dramatically by the addition of oligomers exceeding a critical size of approximately 20 molecules. The results suggest that the process of aggregation of these SH3 domains can take place by a variety of mechanisms, ranging from downhill formation of relatively amorphous species to nucleated formation of highly organised structures, the relative importance of which varies greatly with solution conditions. Comparison with the behaviour of other amyloidogenic systems suggests that the general mechanistic features outlined here are likely to be common to at least a wide variety of peptides and proteins. (c) 2005 Published by Elsevier Ltd.
引用
收藏
页码:189 / 208
页数:20
相关论文
共 72 条
[1]  
BAMFORD R, 2004, THESIS U CAMBRIDGE
[2]   SOLUTION STRUCTURE AND LIGAND-BINDING SITE OF THE SH3 DOMAIN OF THE P85-ALPHA SUBUNIT OF PHOSPHATIDYLINOSITOL 3-KINASE [J].
BOOKER, GW ;
GOUT, I ;
DOWNING, AK ;
DRISCOLL, PC ;
BOYD, J ;
WATERFIELD, MD ;
CAMPBELL, ID .
CELL, 1993, 73 (04) :813-822
[3]   Mechanistic studies of the folding of human lysozyme and the origin of amyloidogenic behavior in its disease-related variants [J].
Canet, D ;
Sunde, M ;
Last, AM ;
Miranker, A ;
Spencer, A ;
Robinson, CV ;
Dobson, CM .
BIOCHEMISTRY, 1999, 38 (20) :6419-6427
[4]  
CANTOR CR, 1980, TECHNIQUES STUDY BIO, P591
[5]   Protofibril formation of amyloid β-protein at low pH via a non-cooperative elongation mechanism [J].
Carrotta, R ;
Manno, M ;
Bulone, D ;
Martorana, V ;
San Biagio, PL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (34) :30001-30008
[6]   Protofibrils, pores, fibrils, and neurodegeneration: Separating the responsible protein aggregates from the innocent bystanders [J].
Caughey, B ;
Lansbury, PT .
ANNUAL REVIEW OF NEUROSCIENCE, 2003, 26 :267-298
[7]   Ultrastructural organization of amyloid fibrils by atomic force microscopy [J].
Chamberlain, AK ;
MacPhee, CE ;
Zurdo, J ;
Morozova-Roche, LA ;
Hill, HAO ;
Dobson, CM ;
Davis, JJ .
BIOPHYSICAL JOURNAL, 2000, 79 (06) :3282-3293
[8]   Physical stability of proteins in aqueous solution: Mechanism and driving forces in nonnative protein aggregation [J].
Chi, EY ;
Krishnan, S ;
Randolph, TW ;
Carpenter, JF .
PHARMACEUTICAL RESEARCH, 2003, 20 (09) :1325-1336
[9]   Rationalization of the effects of mutations on peptide and protein aggregation rates [J].
Chiti, F ;
Stefani, M ;
Taddei, N ;
Ramponi, G ;
Dobson, CM .
NATURE, 2003, 424 (6950) :805-808
[10]   De novo designed peptide-based amyloid fibrils [J].
de la Paz, ML ;
Goldie, K ;
Zurdo, J ;
Lacroix, E ;
Dobson, CM ;
Hoenger, A ;
Serrano, L .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (25) :16052-16057