Comparing simulation of plasma turbulence with experiment

被引:17
作者
Ross, DW
Bravenec, RV
Dorland, W
Beer, MA
Hammett, GW
McKee, GR
Fonck, RJ
Murakami, M
Burrell, KH
Jackson, GL
Staebler, GM
机构
[1] Univ Texas, Fus Res Ctr, Austin, TX 78712 USA
[2] Univ Maryland, College Pk, MD 20742 USA
[3] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[4] Univ Wisconsin, Madison, WI 53706 USA
[5] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[6] Gen Atom Co, San Diego, CA 92186 USA
关键词
D O I
10.1063/1.1424925
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The direct quantitative correspondence between theoretical predictions and the measured plasma fluctuations and transport is tested by performing nonlinear gyro-Landau-fluid simulations with the GRYFFIN (or ITG) code [W. Dorland and G. W. Hammett, Phys. Fluids B 5, 812 (1993); M. A. Beer and G. W. Hammett, Phys. Plasmas 3, 4046 (1996)]. In an L-mode reference discharge in the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)], which has relatively large fluctuations and transport, the turbulence is dominated by ion temperature gradient (ITG) modes. Trapped electron modes and impurity drift waves also play a role. Density fluctuations are measured by beam emission spectroscopy [R. J. Fonck, P. A. Duperrex, and S. F. Paul, Rev. Sci. Instrum. 61, 3487 (1990)]. Experimental fluxes and corresponding diffusivities are analyzed by the TRANSP code [R. J. Hawryluk, in Physics of Plasmas Close to Thermonuclear Conditions, edited by B. Coppi, G. G. Leotta, D. Pfirsch, R. Pozzoli, and E. Sindoni (Pergamon, Oxford, 1980), Vol. 1, p. 19]. The shape of the simulated wave number spectrum is close to the measured one. The simulated ion thermal transport, corrected for ExB low shear, exceeds the experimental value by a factor of 1.5 to 2.0. The simulation overestimates the density fluctuation level by an even larger factor. On the other hand, the simulation underestimates the electron thermal transport, which may be accounted for by modes that are not accessible to the simulation or to the BES measurement. (C) 2002 American Institute of Physics.
引用
收藏
页码:177 / 184
页数:8
相关论文
共 45 条
[1]   Toroidal gyrofluid equations for simulations of tokamak turbulence [J].
Beer, MA ;
Hammett, GW .
PHYSICS OF PLASMAS, 1996, 3 (11) :4046-4064
[2]  
BEER MA, 1999, B AM PHYS SOC, V44, P300
[3]   CORE TURBULENCE AND TRANSPORT STUDIES ON THE TEXAS EXPERIMENTAL TOKAMAK [J].
BRAVENEC, RV ;
GENTLE, KW ;
RICHARDS, B ;
ROSS, DW ;
SING, DC ;
WOOTTON, AJ ;
BROWER, DL ;
LUHMANN, NC ;
PEEBLES, WA ;
YU, CX ;
CROWLEY, TP ;
HEARD, JW ;
HICKOK, RL ;
SCHOCH, PM ;
YANG, XZ .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (07) :2127-2135
[4]   EFFECTS OF LIMITED SPATIAL-RESOLUTION ON FLUCTUATION MEASUREMENTS (INVITED) [J].
BRAVENEC, RV ;
WOTTON, AJ .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1995, 66 (01) :802-805
[5]   EXPERIMENTAL-EVIDENCE FOR ION PRESSURE-GRADIENT DRIVEN TURBULENCE IN TEXT [J].
BROWER, DL ;
REDI, MH ;
TANG, WM ;
BRAVENEC, RV ;
DURST, RD ;
FAN, SP ;
HE, YX ;
KIM, SK ;
LUHMANN, NC ;
MCCOOL, SC ;
MEIGS, AG ;
NAGATSU, M ;
OUROUA, A ;
PEEBLES, WA ;
PHILLIPS, PE ;
RHODES, TL ;
RICHARDS, B ;
RITZ, CP ;
ROWAN, WL ;
WOOTTON, AJ .
NUCLEAR FUSION, 1989, 29 (08) :1247-1254
[7]  
CANDY J, IN PRESS P 28 EUR C
[8]   Progress in anomalous transport research in toroidal magnetic confinement devices [J].
Carreras, BA .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 1997, 25 (06) :1281-1321
[9]  
DIMITS A, COMMUNICATION
[10]   Comparisons and physics basis of tokamak transport models and turbulence simulations [J].
Dimits, AM ;
Bateman, G ;
Beer, MA ;
Cohen, BI ;
Dorland, W ;
Hammett, GW ;
Kim, C ;
Kinsey, JE ;
Kotschenreuther, M ;
Kritz, AH ;
Lao, LL ;
Mandrekas, J ;
Nevins, WM ;
Parker, SE ;
Redd, AJ ;
Shumaker, DE ;
Sydora, R ;
Weiland, J .
PHYSICS OF PLASMAS, 2000, 7 (03) :969-983