Steady and unsteady computations of turbulent flows induced by a 4/45° pitched-blade impeller

被引:49
作者
Wechsler, K [1 ]
Breuer, M [1 ]
Durst, F [1 ]
机构
[1] Univ Erlangen Nurnberg, Inst Fluid Mech, D-91058 Erlangen, Germany
来源
JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME | 1999年 / 121卷 / 02期
关键词
D O I
10.1115/1.2822210
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The present paper summarizes steady and unsteady computations of turbulent flow induced by a pitched-blade turbine (four blades, 45 degrees inclined) in a baffled stirred tank. Mean flow and turbulence characteristics, were determined by solving the Reynolds averaged Navier-Stokes equations together with a standard k-epsilon turbulence model. The round vessel had a diameter of T = 152 mm. The turbine of diameter T/3 was located at a clearance of T/3. The Reynolds number (Re) of the experimental investigation was 7280, and computations were performed at Re = 7280 and Re = 29,000. Techniques of high-performance computing were applied to permit grid sensitivity studies in order to isolate errors resulting from deficiencies of the turbulence model and those resulting from insufficient grid resolution. Both steady and unsteady computations were performed and compared with respect to quality and computational effort. Unsteady computations considered the time-dependent geometry which is caused by the rotation of the impeller within the baffled stirred tank reactor. Steady-state computations also considered neglect the relative motion of impeller and baffles. By solving the governing equations of motion in a rotating frame of reference for the region attached to the impeller, the steady-state approach is able to capture trailing vortices. It is shown that this steady-state computational approach yields numerical results which are in excellent agreement with fully unsteady computations at a fraction of the time and expense for the stirred vessel configuration under consideration.
引用
收藏
页码:318 / 329
页数:12
相关论文
共 34 条
[1]  
ALI A, 1981, CHEM ENG COMMUN, V10, P204
[2]  
ARNAL M, 1992, NOTES NUMERICAL FLUI, V36, P13
[3]   Sliding mesh simulation of laminar flow in stirred reactors [J].
Bakker, A ;
Laroche, RD ;
Wang, MH ;
Calabrese, RV .
CHEMICAL ENGINEERING RESEARCH & DESIGN, 1997, 75 (A1) :42-44
[4]  
BAKKER A, 1994, CHEM ENG RES DES, V72, P583
[5]  
Bakker A, 1996, CHEM ENG RES DES, V74, P485
[6]  
Durst F, 1996, INT J NUMER METH FL, V22, P549, DOI 10.1002/(SICI)1097-0363(19960330)22:6<549::AID-FLD366>3.0.CO
[7]  
2-7
[8]  
DURST F, 1996, NOTES NUMERICAL FLUI, V52, P87
[9]   STEADY-STATE MODELING AND EXPERIMENTAL-MEASUREMENT OF A BAFFLED IMPELLER STIRRED-TANK [J].
HARVEY, AD ;
LEE, CK ;
ROGERS, SE .
AICHE JOURNAL, 1995, 41 (10) :2177-2186
[10]   Experimental and computational study of multiple impeller flows [J].
Harvey, AD ;
Wood, SP ;
Leng, DE .
CHEMICAL ENGINEERING SCIENCE, 1997, 52 (09) :1479-1491