A New Formulation of Receding Horizon Stabilising Control without Terminal Constraint on the State

被引:17
作者
Michalska, Hannah [1 ]
机构
[1] McGill Univ, Dept Elect Engn, Montreal, PQ H3A 2A7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Non-linear systems; Receding horizon control; Stabilising feedback control;
D O I
10.1016/S0947-3580(97)70058-X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new formulation of the open loop optimal control problem is shown to be possible and possesses even stronger stabilising properties than those previously discussed. It is hence documented, contrary to what was understood previously, that the receding horizon control strategy is not delimited to clamped end-point open loop control problem formulations. Due to the absence of the terminal state constraint, the new formulation is shown to permit short optimisation horizons which facilitates on-line repetitive solution of the receding horizon open loop control problem.
引用
收藏
页码:2 / 14
页数:13
相关论文
共 9 条
[1]  
[Anonymous], 1988, DIFFERENTIAL EQUATIO
[2]  
Fleming W.H., 2012, Applications of Mathematics, VVolume 1
[3]  
KEERTHI S. S., 1986, P 20 ANN C INF SCI S, P301
[4]   MODIFIED QUADRATIC COST PROBLEM AND FEEDBACK STABILIZATION OF A LINEAR-SYSTEM [J].
KWON, WH ;
PEARSON, AE .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1977, 22 (05) :838-842
[5]   RECEDING HORIZON CONTROL OF NONLINEAR-SYSTEMS [J].
MAYNE, DQ ;
MICHALSKA, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1990, 35 (07) :814-824
[6]   ROBUST RECEDING HORIZON CONTROL OF CONSTRAINED NONLINEAR-SYSTEMS [J].
MICHALSKA, H ;
MAYNE, DQ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1993, 38 (11) :1623-1633
[7]  
Michalska H., 1994, IMA Journal of Mathematical Control and Information, V11, P321, DOI 10.1093/imamci/11.4.321
[8]  
MICHALSKA H, 1995, PROCEEDINGS OF THE 1995 AMERICAN CONTROL CONFERENCE, VOLS 1-6, P3500
[9]   RECEDING HORIZON CONTROL OF NONLINEAR-SYSTEMS WITHOUT DIFFERENTIABILITY OF THE OPTIMAL VALUE FUNCTION [J].
MICHALSKA, H ;
MAYNE, DQ .
SYSTEMS & CONTROL LETTERS, 1991, 16 (02) :123-130