Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries

被引:442
作者
Zhu, Yujie [1 ]
Xu, Yunhua [1 ]
Liu, Yihang [1 ]
Luo, Chao [1 ]
Wang, Chunsheng [1 ]
机构
[1] Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
ELECTRODE MATERIALS; LI-INSERTION/EXTRACTION; PHOSPHO-OLIVINES; INTERCALATION; CATHODES; INSERTION/DEINSERTION; HYSTERESIS; STABILITY; TRANSPORT; NACRO2;
D O I
10.1039/c2nr32758a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Carbon-coated olivine NaFePO4 (C-NaFePO4) spherical particles with a uniform diameter of similar to 80 nm are obtained by chemical delithiation and subsequent electrochemical sodiation of carbon-coated olivine LiFePO4 (C-LiFePO4), which is synthesized by a solvothermal method. The C-NaFePO4 electrodes are identical (particle size, particle size distribution, surface coating, and active material loading, etc.) to C-LiFePO4 except that Li ions in C-LiFePO4 are replaced by Na ions, making them ideal for comparison of thermodynamics and kinetics between C-NaFePO4 cathode in sodium-ion (Na-ion) batteries and C-LiFePO4 in lithium-ion (Li-ion) batteries. In this paper, the equilibrium potentials, reaction resistances, and diffusion coefficient of Na in C-NaFePO4 are systematically investigated by using the galvanostatic intermittent titration technique (GITT), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), and compared to those of the well-known LiFePO4 cathodes in Li-ion batteries. Due to the lower diffusion coefficient of Na-ion and higher contact and charge transfer resistances in NaFePO4 cathodes, the rate performance of C-NaFePO4 in Na-ion batteries is much worse than that of C-LiFePO4 in Li-ion batteries. However, the cycling stability of C-NaFePO4 is almost comparable to C-LiFePO4 by retaining 90% of its capacity even after 100 charge-discharge cycles at a charge-discharge rate of 0.1 C.
引用
收藏
页码:780 / 787
页数:8
相关论文
共 45 条
[1]   On the Interpretation of Measured Impedance Spectra of Insertion Cathodes for Lithium-Ion Batteries [J].
Atebamba, Jean-Marcel ;
Moskon, Joze ;
Pejovnik, Stane ;
Gaberscek, Miran .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (11) :A1218-A1228
[2]   Hysteresis in metal-hydrogen systems [J].
Balasubramaniam, R .
JOURNAL OF ALLOYS AND COMPOUNDS, 1997, 253 :203-206
[3]  
Berthelot R, 2011, NAT MATER, V10, P74, DOI [10.1038/nmat2920, 10.1038/NMAT2920]
[4]   Crystal chemistry of Na insertion/deinsertion in FePO4-NaFePO4 [J].
Casas-Cabanas, Montse ;
Roddatis, Vladimir V. ;
Saurel, Damien ;
Kubiak, Pierre ;
Carretero-Gonzalez, Javier ;
Palomares, Veronica ;
Serras, Paula ;
Rojo, Teofilo .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (34) :17421-17423
[5]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[6]   ELECTROCHEMICAL INSERTION OF SODIUM INTO CARBON [J].
DOEFF, MM ;
MA, YP ;
VISCO, SJ ;
DEJONGHE, LC .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (12) :L169-L170
[7]   Particle morphology, crystal orientation, and electrochemical reactivity of LiFePO4 synthesized by the hydrothermal method at 443 K [J].
Dokko, Kaoru ;
Koizumi, Shohei ;
Nakano, Hiroyuki ;
Kanamura, Kiyoshi .
JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (45) :4803-4810
[8]  
Dreyer W, 2010, NAT MATER, V9, P448, DOI [10.1038/nmat2730, 10.1038/NMAT2730]
[9]   A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries [J].
Ellis, B. L. ;
Makahnouk, W. R. M. ;
Makimura, Y. ;
Toghill, K. ;
Nazar, L. F. .
NATURE MATERIALS, 2007, 6 (10) :749-753
[10]   The meaning of impedance measurements of LiFePO4 cathodes:: A linearity study [J].
Gaberscek, Miran ;
Dominko, Robert ;
Jamnik, Janez .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :944-948