Uniform INF-SUP conditions for the spectral discretization of the Stokes problem

被引:69
作者
Bernardi, C
Maday, Y
机构
[1] CNRS, F-75252 Paris 05, France
[2] Univ Paris 06, F-75252 Paris, France
[3] Univ Paris Sud, CNRS, ASCI, F-91405 Orsay, France
关键词
D O I
10.1142/S0218202599000208
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In standard spectral discretizations of the Stokes problem, error estimates on the pressure are slightly less accurate than the best approximation estimates, since the constant of the Babuska-Brezzi inf-sup condition is not bounded independently of the discretization parameter. In this paper, we propose two possible discrete spaces for the pressure: for each of them, we prove a uniform inf-sup condition, which leads in particular to an optimal error estimate on the pressure.
引用
收藏
页码:395 / 414
页数:20
相关论文
共 22 条
[1]  
AZAIEZ M, 1997, THESIS U P SABATIER
[2]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[3]  
BERNARDI C, 1987, RECH AEROSPATIALE, P1
[4]  
BERNARDI C, 1994, LECT NOTES PURE APPL, V167, P27
[5]  
BERNARDI C, UNPUB HDB NUMERICAL
[6]  
BERNARDI C., 1997, HDB NUMER ANAL, V5, P209
[7]   STABILITY OF FINITE-ELEMENTS UNDER DIVERGENCE CONSTRAINTS [J].
BOLAND, JM ;
NICOLAIDES, RA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (04) :722-731
[8]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[9]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[10]  
CANUTO C., 1987, Spectral Methods in Fluid Dynamics