Effect of degree of substitution and molecular weight of carboxymethyl chitosan nanoparticles on doxorubicin delivery

被引:70
作者
Shi, XW [1 ]
Du, YM [1 ]
Yang, JH [1 ]
Zhang, BZ [1 ]
Sun, LP [1 ]
机构
[1] Wuhan Univ, Coll Resource & Environm Sci, Dept Environm Sci, Wuhan 430072, Peoples R China
关键词
carboxymethyl chitosan; doxorubicin; nanoparticles; drug delivery systems;
D O I
10.1002/app.23040
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The aim of this study was to evaluate the potential of carboxymethyl chitosan (CM-chitosan) nanoparticles as carriers for the anticancer drug, doxorubicin (DOX). Different kinds of CM-chitosan with various molecular weight (MW) and degree Of Substitution (DS) were employed to prepare nanoparticles through ionical gelification with calcium ions. Factors affecting nanoparticles formation in relation to MW and DS of CM-chitosan were discussed. By the way of dynamic light scattering (DLS), TEM, and atomic force microscopy (AIM), nanoparticles were shown to be around 200-300 nm and in a narrow distribution. FTIR revealed strong electrostatic interactions between carboxyl groups of CM-chitosan and calcium ions. DOX delivery was affected by the molecular structure of CM-chitosan. Increasing MWs of CM-chitosan from 4.50 to 38.9 kDa, DOX entrapment efficiency was enhanced from 10 to 40% and higher DS slightly improved the load of DOX. In vitro release studies showed an initial burst followed by an extended slow release. The DOX release rate was hindered by CM-chitosan with high MW and DS. These preliminary studies showed the feasibility of CM-chitosan nanoparticles to entrap DOX and the potential to deliver it as controlled release nanoparticles. (c) 2006 Wiley Periodicals, Inc.
引用
收藏
页码:4689 / 4696
页数:8
相关论文
共 27 条
[1]  
[Anonymous], [No title captured], Patent No. 4619995
[2]   Nanoparticles in cancer therapy and diagnosis [J].
Brigger, I ;
Dubernet, C ;
Couvreur, P .
ADVANCED DRUG DELIVERY REVIEWS, 2002, 54 (05) :631-651
[3]  
Calvo P, 1997, J APPL POLYM SCI, V63, P125, DOI 10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO
[4]  
2-4
[5]   Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices [J].
Chen, LY ;
Tian, ZG ;
Du, YM .
BIOMATERIALS, 2004, 25 (17) :3725-3732
[6]  
Flory P J., PRINCIPLES POLYM CHE
[7]   Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity [J].
Fonseca, C ;
Simoes, S ;
Gaspar, R .
JOURNAL OF CONTROLLED RELEASE, 2002, 83 (02) :273-286
[8]   Uptake and cytotoxicity of chitosan molecules and nanoparticles: Effects of molecular weight and degree of deacetylation [J].
Huang, M ;
Khor, E ;
Lim, LY .
PHARMACEUTICAL RESEARCH, 2004, 21 (02) :344-353
[9]   Chitosan nanoparticles as delivery systems for doxorubicin [J].
Janes, KA ;
Fresneau, MP ;
Marazuela, A ;
Fabra, A ;
Alonso, MJ .
JOURNAL OF CONTROLLED RELEASE, 2001, 73 (2-3) :255-267
[10]   Depolymerized chitosan nanoparticles for protein delivery: Preparation and characterization [J].
Janes, KA ;
Alonso, MJ .
JOURNAL OF APPLIED POLYMER SCIENCE, 2003, 88 (12) :2769-2776