Pressure effects on viscosity and flow stability of polyethylene melts during extrusion

被引:45
作者
Carreras, ES [1 ]
El Kissi, N [1 ]
Piau, JM [1 ]
Toussaint, F [1 ]
Nigen, S [1 ]
机构
[1] Univ Grenoble 1, CNRS, Inst Natl Polytech Grenoble, Lab Rheol,UMR 5520, F-38041 Grenoble, France
关键词
extrusion; PE; pressure dependence; shear viscosity; flow stability; entrance flow;
D O I
10.1007/s00397-005-0010-1
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In the present work, the effects of pressure on the viscosity and flow stability of four commercial grade polyethylenes (PEs) have been studied: linear-low-density polyethylene copolymer, high-density polyethylene, metallocene polyethylenes with short-chain branches (mPE-SCB), and metallocene polyethylenes with long chain branching (mPE-LCB). The range of shear rates considered covers both stable and unstable flow regimes. "Enhanced exit-pressure" experiments have been performed attaining pressures of the order of 500x10(5) stop Pa at the die exit. The necessary experimental conditions have been clearly defined so that dissipative heating can be neglected and pressure effects isolated. The results obtained show an exponential increase in both shear and entrance-flow pressure drop with mean pressure when shear rate is fixed and as long as flow is stable. These pressure effects are described by two pressure coefficients, beta(S) under shear and, beta(E) under elongation, that are calculated using time-pressure superposition and that are independent of mean pressure and flow rate. For three out of four PE, pressure coefficient values can be considered equal under shear and under elongation. However, for the mPE-LCB, the pressure coefficient under elongation is found to be about 30% lower than under shear. Flow instabilities in the form of oscillating flows or of upstream instabilities appear at lower shear rates as mean pressure increases. Nevertheless, the critical shear stress at which they are triggered remains independent of mean pressure. Moreover, it is found that the beta(S) values obtained for stable flows do not differ much from the values obtained during upstream instability regimes, and differ really from pressure effects observed under oscillating flow and slip conditions.
引用
收藏
页码:209 / 222
页数:14
相关论文
共 25 条
[1]   END CORRECTIONS IN THE CAPILLARY FLOW OF POLYETHYLENE [J].
BAGLEY, EB .
JOURNAL OF APPLIED PHYSICS, 1957, 28 (05) :624-627
[2]   The pressure dependence of the shear and elongational properties of polymer melts [J].
Binding, DM ;
Couch, MA ;
Walters, K .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1998, 79 (2-3) :137-155
[3]  
CHOI SY, 1968, J POLYM SCI A, V2, P2046
[4]   High pressure capillary rheometry of polymeric fluids [J].
Couch, MA ;
Binding, DM .
POLYMER, 2000, 41 (16) :6323-6334
[5]   PRESSURE DROP-FLOW RATE-EQUATION FOR ADIABATIC CAPILLARY-FLOW WITH A PRESSURE-DEPENDENT AND TEMPERATURE-DEPENDENT VISCOSITY [J].
DENN, MM .
POLYMER ENGINEERING AND SCIENCE, 1981, 21 (02) :65-68
[6]   ISSUES IN VISCOELASTIC FLUID-MECHANICS [J].
DENN, MM .
ANNUAL REVIEW OF FLUID MECHANICS, 1990, 22 :13-34
[7]   Extrusion instabilities and wall slip [J].
Denn, MM .
ANNUAL REVIEW OF FLUID MECHANICS, 2001, 33 :265-287
[8]   THE DIFFERENT CAPILLARY-FLOW REGIMES OF ENTANGLED POLYDIMETHYLSILOXANE POLYMERS - MACROSCOPIC SLIP AT THE WALL, HYSTERESIS AND CORK FLOW [J].
ELKISSI, N ;
PIAU, JM .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1990, 37 (01) :55-94
[9]   Creep recovery behavior of metallocene linear low-density polyethylenes [J].
Gabriel, C ;
Münstedt, H .
RHEOLOGICA ACTA, 1999, 38 (05) :393-403
[10]  
Goubert A., 2001, APPL RHEOL, V11, P26