Noise and O(1) amplitude effects on heteroclinic cycles

被引:33
作者
Stone, E [1 ]
Armbruster, D
机构
[1] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
[2] Arizona State Univ, Dept Math, Tempe, AZ 85287 USA
关键词
D O I
10.1063/1.166423
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The dynamics of structurally stable heteroclinic cycles connecting fixed points with one-dimensional unstable manifolds under the influence of noise is analyzed. Fokker-Planck equations for the evolution of the probability distribution of trajectories near heteroclinic cycles are solved. The influence of the magnitude of the stable and unstable eigenvalues at the fixed points and of the amplitude of the added noise on the location and shape of the probability distribution is determined. As a consequence, the jumping of solution trajectories in and out of invariant subspaces of the deterministic system can be explained. (C) 1999 American Institute of Physics. [S1054-1500(99)01602-X].
引用
收藏
页码:499 / 506
页数:8
相关论文
共 8 条
[1]   CONVECTION IN A ROTATING LAYER - SIMPLE CASE OF TURBULENCE [J].
BUSSE, FH ;
HEIKES, KE .
SCIENCE, 1980, 208 (4440) :173-175
[2]  
Gard T.C., 1988, INTRO STOCHASTIC DIF
[3]   STRUCTURALLY STABLE HETEROCLINIC CYCLES [J].
GUCKENHEIMER, J ;
HOLMES, P .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1988, 103 :189-192
[4]  
Kuske R, 1998, PHYSICA D, V120, P255, DOI 10.1016/S0167-2789(98)00085-2
[5]   NOISE AND SLOW-FAST DYNAMICS IN A 3-WAVE RESONANCE PROBLEM [J].
LYTHE, GD ;
PROCTOR, MRE .
PHYSICAL REVIEW E, 1993, 47 (05) :3122-3127
[6]   RANDOM PERTURBATIONS OF HETEROCLINIC ATTRACTORS [J].
STONE, E ;
HOLMES, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1990, 50 (03) :726-743
[7]   UNSTABLE FIXED-POINTS, HETEROCLINIC CYCLES AND EXPONENTIAL TAILS IN TURBULENCE PRODUCTION [J].
STONE, E ;
HOLMES, P .
PHYSICS LETTERS A, 1991, 155 (01) :29-42
[8]  
STONE E, PREPRINT