Gene silencing nucleic acids designed by scanning arrays: Anti-EGFR activity of siRNA, ribozyme and DNA enzymes targeting a single hybridization-accessible region using the same delivery system

被引:45
作者
Beale, G
Hollins, AJ
Benboubetra, M
Sohail, M
Fox, SP
Benter, I
Akhtar, S
机构
[1] Univ Wales Coll Cardiff, Welsh Sch Pharm, Ctr Genome Based Therapeut, Cardiff CF10 3XF, S Glam, Wales
[2] Univ Setif, Fac Sci, Lab Appl Biochem, Setif, Algeria
[3] Univ Oxford, Dept Biochem, Oxford OX1 3QU, England
[4] Kuwait Univ, Fac Med, Dept Pharmacol, Kuwait, Kuwait
关键词
antisense; ribozyme; siRNA; DNA enzyme;
D O I
10.1080/1061186042000207039
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Gene silencing nucleic acids such as ribozymes, DNA enzymes (DNAzymes), antisense oligonucleotides (ODNs), and small interfering (si)RNA rely on hybridization to accessible sites within target mRNA for activity. However, the accurate prediction of hybridization accessible sites within mRNAs for design of effective gene silencing reagents has been problematic. Here we have evaluated the use of scanning arrays for the effective design of ribozymes, DNAzymes and siRNA sequences targeting the epidermal growth factor receptor (EGFR) mRNA. All three gene silencing nucleic acids designed to be complementary to the same array-defined hybridization accessible-site within EGFR mRNA were effective in inhibiting the growth of EGFR over-expressing A431 cancer cells in a dose dependent manner when delivered using the cationic lipid (Lipofectin) delivery system. Effects on cell growth were correlated in all cases with concomitant dose-dependent reduction in EGFR protein expression. The control sequences did not markedly alter cell growth or EGFR expression. The ribozyme and DNAzyme exhibited similar potency in inhibiting cell growth with IC50 values of around 750 nM. In contrast, siRNA was significantly more potent with an IC50 of about 100 nM when delivered with Lipofectin. The potency of siRNA was further enhanced when Oligofectamine was used to further improve both the cellular uptake and subcellular distribution of fluorescently labelled siRNA. Our studies show that active siRNAs can be designed using hybridization accessibility profiles on scanning arrays and that siRNAs targeting the same array-designed hybridization accessible site in EGFR mRNA and delivered using the same delivery system are more potent than ribozymes and DNAzymes in inhibiting EGFR expression in A431 cells.
引用
收藏
页码:449 / 456
页数:8
相关论文
共 25 条
[2]   INTERACTIONS OF ANTISENSE DNA OLIGONUCLEOTIDE ANALOGS WITH PHOSPHOLIPID-MEMBRANES (LIPOSOMES) [J].
AKHTAR, S ;
BASU, S ;
WICKSTROM, E ;
JULIANO, RL .
NUCLEIC ACIDS RESEARCH, 1991, 19 (20) :5551-5559
[3]   The delivery of antisense therapeutics [J].
Akhtar, S ;
Hughes, MD ;
Khan, A ;
Bibby, M ;
Hussain, M ;
Nawaz, Q ;
Double, J ;
Sayyed, P .
ADVANCED DRUG DELIVERY REVIEWS, 2000, 44 (01) :3-21
[4]   Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo [J].
Bertrand, JR ;
Pottier, M ;
Vekris, A ;
Opolon, P ;
Maksimenko, A ;
Malvy, C .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2002, 296 (04) :1000-1004
[5]   The efficacy of small interfering RNAs targeted to the type 1 insulin-like growth factor receptor (IGF1R) is influenced by secondary structure in the IGF1R transcript [J].
Bohula, EA ;
Salisbury, AJ ;
Sohail, M ;
Playford, MP ;
Riedemann, J ;
Southern, EM ;
Macaulay, VM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (18) :15991-15997
[6]  
Coulson JM, 1996, MOL PHARMACOL, V50, P314
[7]   Killing the messenger: Short RNAs that silence gene expression [J].
Dykxhoorn, DM ;
Novina, CD ;
Sharp, PA .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2003, 4 (06) :457-467
[8]   The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides [J].
Far, RKK ;
Sczakiel, G .
NUCLEIC ACIDS RESEARCH, 2003, 31 (15) :4417-4424
[9]   Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2′-O-methyl RNA, phosphorothioates and small interfering RNA [J].
Grünweller, A ;
Wyszko, E ;
Bieber, B ;
Jahnel, R ;
Erdmann, VA ;
Kurreck, J .
NUCLEIC ACIDS RESEARCH, 2003, 31 (12) :3185-3193
[10]   Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor [J].
Holen, T ;
Amarzguioui, M ;
Wiiger, MT ;
Babaie, E ;
Prydz, H .
NUCLEIC ACIDS RESEARCH, 2002, 30 (08) :1757-1766