Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world

被引:476
作者
Koonin, Eugene V. [1 ]
Wolf, Yuri I. [1 ]
机构
[1] NIH, Natl Ctr Biotechnol Informat, Natl Lib Med, Bethesda, MD 20892 USA
关键词
D O I
10.1093/nar/gkn668
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The first bacterial genome was sequenced in 1995, and the first archaeal genome in 1996. Soon after these breakthroughs, an exponential rate of genome sequencing was established, with a doubling time of approximately 20 months for bacteria and approximately 34 months for archaea. Comparative analysis of the hundreds of sequenced bacterial and dozens of archaeal genomes leads to several generalizations on the principles of genome organization and evolution. A crucial finding that enables functional characterization of the sequenced genomes and evolutionary reconstruction is that the majority of archaeal and bacterial genes have conserved orthologs in other, often, distant organisms. However, comparative genomics also shows that horizontal gene transfer (HGT) is a dominant force of prokaryotic evolution, along with the loss of genetic material resulting in genome contraction. A crucial component of the prokaryotic world is the mobilome, the enormous collection of viruses, plasmids and other selfish elements, which are in constant exchange with more stable chromosomes and serve as HGT vehicles. Thus, the prokaryotic genome space is a tightly connected, although compartmentalized, network, a novel notion that undermines the Tree of Life model of evolution and requires a new conceptual framework and tools for the study of prokaryotic evolution.
引用
收藏
页码:6688 / 6719
页数:32
相关论文
共 278 条
  • [1] Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
    Altschul, SF
    Madden, TL
    Schaffer, AA
    Zhang, JH
    Zhang, Z
    Miller, W
    Lipman, DJ
    [J]. NUCLEIC ACIDS RESEARCH, 1997, 25 (17) : 3389 - 3402
  • [2] Evolution and ecology of antibiotic resistance genes
    Aminov, Rustam I.
    Mackie, Roderick I.
    [J]. FEMS MICROBIOLOGY LETTERS, 2007, 271 (02) : 147 - 161
  • [3] Comparative genomics and evolution of proteins involved in RNA metabolism
    Anantharaman, V
    Koonin, EV
    Aravind, L
    [J]. NUCLEIC ACIDS RESEARCH, 2002, 30 (07) : 1427 - 1464
  • [4] Automated genome sequence analysis and annotation
    Andrade, MA
    Brown, NP
    Leroy, C
    Hoersch, S
    de Daruvar, A
    Reich, C
    Franchini, A
    Tamames, J
    Valencia, A
    Ouzounis, C
    Sander, C
    [J]. BIOINFORMATICS, 1999, 15 (05) : 391 - 412
  • [5] The many faces of the helix-turn-helix domain: Transcription regulation and beyond
    Aravind, L
    Anantharaman, V
    Balaji, S
    Babu, MM
    Iyer, LM
    [J]. FEMS MICROBIOLOGY REVIEWS, 2005, 29 (02) : 231 - 262
  • [6] DNA-binding proteins and evolution of transcription regulation in the archaea
    Aravind, L
    Koonin, EV
    [J]. NUCLEIC ACIDS RESEARCH, 1999, 27 (23) : 4658 - 4670
  • [7] Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles
    Aravind, L
    Tatusov, RL
    Wolf, YI
    Walker, DR
    Koonin, EV
    [J]. TRENDS IN GENETICS, 1998, 14 (11) : 442 - 444
  • [8] The domains of death: evolution of the apoptosis machinery
    Aravind, L
    Dixit, VM
    Koonin, EV
    [J]. TRENDS IN BIOCHEMICAL SCIENCES, 1999, 24 (02) : 47 - 53
  • [9] Evolution of transcription factors and the gene regulatory network in Escherichia coli
    Babu, MM
    Teichmann, SA
    [J]. NUCLEIC ACIDS RESEARCH, 2003, 31 (04) : 1234 - 1244
  • [10] Do orthologous gene phylogenies really support tree-thinking?
    Bapteste, E
    Susko, E
    Leigh, J
    MacLeod, D
    Charlebois, RL
    Doolittle, WF
    [J]. BMC EVOLUTIONARY BIOLOGY, 2005, 5 (1)