Altered Bad localization and interaction between Bad and Bcl-xL in the hippocampus after transient global ischemia

被引:29
作者
Abe, T [1 ]
Takagi, N [1 ]
Nakano, M [1 ]
Furuya, M [1 ]
Takeo, S [1 ]
机构
[1] Tokyo Univ Pharm & Life Sci, Dept Pharmacol, Fac Pharmaceut Sci, Hachioji, Tokyo 1910392, Japan
关键词
Bad; Bcl-xL; mitochondria; transient global ischemia;
D O I
10.1016/j.brainres.2004.03.003
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Accumulating evidence indicates that the mitochondrial cell-death pathway, which involves the release of cytochrome c from mitochondria, participates in neuronal cell death after transient cerebral ischemia. However, the upstream events, that induce cytochrome c release after transient global ischemia are not fully understood. Bad is a pro-apoptotic member of the bcl-2 gene family that promotes apoptosis by binding to and inhibiting functions of anti-apoptotic proteins Bcl-2 and Bcl-xL. We investigated the effects of transient (15 min) global ischemia on the intracellular localization of Bad and the interaction of Bad with calcineurin, Akt or Bcl-xL in the vulnerable CA1 and resistant CA3/dentate gyrus of the hippocampus. Immunoblotting analysis revealed that the amount of Bad in mitochondria significantly increased after ischemia. Co-immunoprecipitation studies showed decreased interactions of Bad with Akt and calcineurin in the cytosol and increased binding with Bcl-xL in the mitochondrial fraction of hippocampal CA1, but not in the CA3/dentate gyros region. Further, we examined the effect of recombinant Bad on the cytochrome c release front isolated mitochondria. Treatment with both recombinant Bad and calcium, but not with recombinant Bad alone, induced cytochrome c release. These results suggest that changes in localization and complex formation by Bad are, at least in part, involved in the vulnerability of cells after transient global ischemia. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:159 / 168
页数:10
相关论文
共 50 条
[1]   Bcl-2 and the outer mitochondrial membrane in the inactivation of cytochrome c during fas-mediated apoptosis [J].
Adachi, S ;
Cross, AR ;
Babior, BM ;
Gottlieb, RA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (35) :21878-21882
[2]   The Kit receptor promotes cell survival via activation of PI 3-kinase and subsequent Akt-mediated phosphorylation of Bad on Ser136 [J].
Blume-Jensen, P ;
Janknecht, R ;
Hunter, T .
CURRENT BIOLOGY, 1998, 8 (13) :779-782
[3]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[4]   Intracellular Bax translocation after transient cerebral ischemia: Implications for a role of the mitochondrial apoptotic signaling pathway in ischemic neuronal death [J].
Cao, GD ;
Minami, M ;
Pei, W ;
Yan, CH ;
Chen, DX ;
O'Horo, C ;
Graham, SH ;
Chen, J .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2001, 21 (04) :321-333
[5]  
Chen J, 1996, J NEUROCHEM, V67, P64
[6]   Increases in Bcl-2 and cleavage of caspase-1 and caspase-3 in human brain after head injury [J].
Clark, RSB ;
Kochanek, PM ;
Chen, MZ ;
Watkins, SC ;
Marion, DW ;
Chen, J ;
Hamilton, RL ;
Loeffert, JE ;
Graham, SH .
FASEB JOURNAL, 1999, 13 (08) :813-821
[7]   Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery [J].
Datta, SR ;
Dudek, H ;
Tao, X ;
Masters, S ;
Fu, HA ;
Gotoh, Y ;
Greenberg, ME .
CELL, 1997, 91 (02) :231-241
[8]  
DEL PL, 1997, SCIENCE, V278, P687
[9]   Apoptosis after traumatic human spinal cord injury [J].
Emery, E ;
Aldana, P ;
Bunge, MB ;
Puckett, W ;
Srinivasan, A ;
Keane, RW ;
Bethea, J ;
Levi, ADO .
JOURNAL OF NEUROSURGERY, 1998, 89 (06) :911-920
[10]   Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition of the caspase family [J].
Endres, H ;
Namura, S ;
Skimizu-Sasamata, M ;
Waeber, C ;
Zhang, L ;
Gómez-Isla, T ;
Hyman, BT ;
Moskowitz, MA .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1998, 18 (03) :238-247