Accumulating evidence indicates that the mitochondrial cell-death pathway, which involves the release of cytochrome c from mitochondria, participates in neuronal cell death after transient cerebral ischemia. However, the upstream events, that induce cytochrome c release after transient global ischemia are not fully understood. Bad is a pro-apoptotic member of the bcl-2 gene family that promotes apoptosis by binding to and inhibiting functions of anti-apoptotic proteins Bcl-2 and Bcl-xL. We investigated the effects of transient (15 min) global ischemia on the intracellular localization of Bad and the interaction of Bad with calcineurin, Akt or Bcl-xL in the vulnerable CA1 and resistant CA3/dentate gyrus of the hippocampus. Immunoblotting analysis revealed that the amount of Bad in mitochondria significantly increased after ischemia. Co-immunoprecipitation studies showed decreased interactions of Bad with Akt and calcineurin in the cytosol and increased binding with Bcl-xL in the mitochondrial fraction of hippocampal CA1, but not in the CA3/dentate gyros region. Further, we examined the effect of recombinant Bad on the cytochrome c release front isolated mitochondria. Treatment with both recombinant Bad and calcium, but not with recombinant Bad alone, induced cytochrome c release. These results suggest that changes in localization and complex formation by Bad are, at least in part, involved in the vulnerability of cells after transient global ischemia. (C) 2004 Elsevier B.V. All rights reserved.