Synchronization from disordered driving forces in arrays of coupled oscillators

被引:48
作者
Brandt, SF [1 ]
Dellen, BK [1 ]
Wessel, R [1 ]
机构
[1] Washington Univ, Dept Phys, St Louis, MO 63130 USA
关键词
D O I
10.1103/PhysRevLett.96.034104
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The effects of disorder in external forces on the dynamical behavior of coupled nonlinear oscillator networks are studied. When driven synchronously, i.e., all driving forces have the same phase, the networks display chaotic dynamics. We show that random phases in the driving forces result in regular, periodic network behavior. Intermediate phase disorder can produce network synchrony. Specifically, there is an optimal amount of phase disorder, which can induce the highest level of synchrony. These results demonstrate that the spatiotemporal structure of external influences can control chaos and lead to synchronization in nonlinear systems.
引用
收藏
页数:4
相关论文
共 19 条
[1]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[2]   TAMING SPATIOTEMPORAL CHAOS WITH DISORDER [J].
BRAIMAN, Y ;
LINDNER, JF ;
DITTO, WL .
NATURE, 1995, 378 (6556) :465-467
[3]   Neuronal oscillations in cortical networks [J].
Buzsáki, G ;
Draguhn, A .
SCIENCE, 2004, 304 (5679) :1926-1929
[4]   Spatiotemporal organization of coupled nonlinear pendula through impurities [J].
Gavrielides, A ;
Kottos, T ;
Kovanis, V ;
Tsironis, GP .
PHYSICAL REVIEW E, 1998, 58 (05) :5529-5534
[5]   Self-organisation of coupled nonlinear oscillators through impurities [J].
Gavrielides, A ;
Kottos, T ;
Kovanis, V ;
Tsironis, GP .
EUROPHYSICS LETTERS, 1998, 44 (05) :559-564
[6]   SYNCHRONOUS CHAOS IN COUPLED OSCILLATOR-SYSTEMS [J].
HEAGY, JF ;
CARROLL, TL ;
PECORA, LM .
PHYSICAL REVIEW E, 1994, 50 (03) :1874-1885
[7]   Introduction: Control and synchronization in chaotic dynamical systems [J].
Kurths, J ;
Boccaletti, S ;
Grebogi, C ;
Lai, YC .
CHAOS, 2003, 13 (01) :126-127
[8]   CONTROLLING CHAOS [J].
OTT, E ;
GREBOGI, C ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1990, 64 (11) :1196-1199
[9]   CONTINUOUS CONTROL OF CHAOS BY SELF-CONTROLLING FEEDBACK [J].
PYRAGAS, K .
PHYSICS LETTERS A, 1992, 170 (06) :421-428
[10]   Control of chaos via an unstable delayed feedback controller [J].
Pyragas, K .
PHYSICAL REVIEW LETTERS, 2001, 86 (11) :2265-2268