Superspace groups without the embedding: The link between superspace and Fourier-space crystallography

被引:23
作者
Drager, J
Mermin, ND
机构
[1] Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY
关键词
D O I
10.1103/PhysRevLett.76.1489
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The symmetry classification of three-dimensional periodic or aperiodic crystals is given a coordinate independent formulation which establishes the precise connection between Fourier-space and superspace crystallography. Superspace groups emerge without having to embed an aperiodic crystal in a higher-dimensional space.
引用
收藏
页码:1489 / 1492
页数:4
相关论文
共 8 条
[1]  
DRAGER J, 1995, 5TH P INT C QUAS, P72
[2]  
Hartley B., 1970, Rings, modules and linear algebra. A further course in algebra describing the structure of Abelian groups and canonical forms of matrices through the study of rings and modules
[3]  
JANSSEN T, 1992, INT TABLES CRYSTALLO, VC, P797
[4]   THE SPACE-GROUPS OF ICOSAHEDRAL QUASI-CRYSTALS AND CUBIC, ORTHORHOMBIC, MONOCLINIC, AND TRICLINIC CRYSTALS [J].
MERMIN, ND .
REVIEWS OF MODERN PHYSICS, 1992, 64 (01) :3-49
[5]   BEWARE OF 46-FOLD SYMMETRY - THE CLASSIFICATION OF TWO-DIMENSIONAL QUASICRYSTALLOGRAPHIC LATTICES [J].
MERMIN, ND ;
ROKHSAR, DS ;
WRIGHT, DC .
PHYSICAL REVIEW LETTERS, 1987, 58 (20) :2099-2101
[6]   THE SPACE-GROUPS OF AXIAL CRYSTALS AND QUASI-CRYSTALS [J].
RABSON, DA ;
MERMIN, ND ;
ROKHSAR, DS ;
WRIGHT, DC .
REVIEWS OF MODERN PHYSICS, 1991, 63 (03) :699-733
[7]   SCALE EQUIVALENCE OF QUASICRYSTALLOGRAPHIC SPACE-GROUPS [J].
ROKHSAR, DS ;
WRIGHT, DC ;
MERMIN, ND .
PHYSICAL REVIEW B, 1988, 37 (14) :8145-8149
[8]  
WONDRATSCHEK H, 1995, INT TABLES CRYSTALLO, VA, P711