Self-similar solutions for Navier-Stokes equations in R(3)

被引:132
作者
Cannone, M
Planchon, F
机构
[1] UNIV PARIS 09, CEREMADE, F-75775 PARIS 16, FRANCE
[2] ECOLE POLYTECH, CTR MATH, URA 169 CNRS, F-91128 PALAISEAU, FRANCE
关键词
D O I
10.1080/03605309608821179
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct self-similar solutions for three-dimensional incompressible Navier-Stokes equations, providing some examples of functional spaces where this can be done. We apply our results to a particular case of L(2) initial data.
引用
收藏
页码:179 / 193
页数:15
相关论文
共 13 条
[1]  
Bergh J., 1976, INTERPOLATION SPACES
[2]  
Cannone M., 1993, SEMINAIRE X EDP
[3]  
CANNONE M, 1995, THESIS U PARIS 9
[4]   ON THE NAVIER-STOKES INITIAL VALUE PROBLEM .1. [J].
FUJITA, H ;
KATO, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1964, 16 (04) :269-315
[5]   SOLUTIONS IN LR OF THE NAVIER-STOKES INITIAL-VALUE PROBLEM [J].
GIGA, Y ;
MIYAKAWA, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1985, 89 (03) :267-281
[6]   SOLUTIONS FOR SEMILINEAR PARABOLIC EQUATIONS IN LP AND REGULARITY OF WEAK SOLUTIONS OF THE NAVIER-STOKES SYSTEM [J].
GIGA, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 62 (02) :186-212
[7]   NAVIER-STOKES FLOW IN R3 WITH MEASURES AS INITIAL VORTICITY AND MORREY SPACES [J].
GIGA, Y ;
MIYAKAWA, T .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1989, 14 (05) :577-618
[9]  
KATO T, 1962, REND SEMIN MAT U PAD, V32, P243
[10]  
Littlewood JE, 1937, P LOND MATH SOC, V42, P52