One-pot synthesis of SnO2/reduced graphene oxide nanocomposite in ionic liquid-based solution and its application for lithium ion batteries

被引:28
作者
Gu, Changdong [1 ]
Zhang, Heng
Wang, Xiuli
Tu, Jiangping
机构
[1] Zhejiang Univ, State Key Lab Silicon Mat, Key Lab Adv Mat & Applicat Batteries Zhejiang Pro, Hangzhou 310027, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Composite; Nanostructures; Chemical synthesis; Electrochemical properties; DEEP EUTECTIC SOLVENT; STORAGE PERFORMANCE; SNO2; NANOPARTICLES; GRAPHITE OXIDE; ANODE MATERIAL; HIGH-CAPACITY; TEMPLATE; FABRICATION; COMPOSITES; REDUCTION;
D O I
10.1016/j.materresbull.2013.06.041
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A facile and low-temperature method is developed for SnO2/graphene composite which involves an ultrasonic-assistant oxidation-reduction reaction between Sn2+ and graphene oxide in a choline chloride-ethylene glycol based ionic liquid under ambient conditions. The reaction solution is non-corrosive and environmental-friendly. Moreover, the proposed technique does not require complicated infrastructures and heat treatment. The SnO2/graphene composite consists of about 4 nm sized SnO2 nanoparticles with cassiterite structure mono-dispersed on the surface of reduced graphene oxide. As anode for lithium-ion batteries, the SnO2/graphene composite shows a satisfying cycling stability (535 mAh g(-1) after 50 cycles @100 mA g(-1)), which is significantly prior to the bare 4 nm sized SnO2 nanocrsytals. The graphene sheets in the hybrid nanostructure could provide a segmentation effect to alleviate the volume expansion of the SnO2 and restrain the small and active Sn-based particles aggregating into larger and inactive clusters during cycling. (c) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4112 / 4117
页数:6
相关论文
共 34 条
[1]   Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids [J].
Abbott, AP ;
Boothby, D ;
Capper, G ;
Davies, DL ;
Rasheed, RK .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (29) :9142-9147
[2]   Investigation of the structural and electrochemical properties of size-controlled SnO2 nanoparticles [J].
Ahn, HJ ;
Choi, HC ;
Park, KW ;
Kim, SB ;
Sung, YE .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (28) :9815-9820
[3]   Facile synthesis and Li-storage performance of SnO nanoparticles and microcrystals [J].
Cherian, Christie T. ;
Reddy, M. V. ;
Haur, Sow Chorng ;
Chowdari, B. V. R. .
RSC ADVANCES, 2013, 3 (09) :3118-3123
[4]   Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials [J].
Compton, Owen C. ;
Nguyen, SonBinh T. .
SMALL, 2010, 6 (06) :711-723
[5]   Key factors controlling the reversibility of the reaction of lithium with SnO2 and Sn2BPO6 glass [J].
Courtney, IA ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (09) :2943-2948
[6]   SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties [J].
Ding, Shujiang ;
Luan, Deyan ;
Boey, Freddy Yin Chiang ;
Chen, Jun Song ;
Lou, Xiong Wen .
CHEMICAL COMMUNICATIONS, 2011, 47 (25) :7155-7157
[7]   Synthesis of polycrystalline SnO2 nanotubes on carbon nanotube template for anode material of lithium-ion battery [J].
Du, Ning ;
Zhang, Hui ;
Chen, Bindi ;
Ma, Xiangyang ;
Huang, Xiaohua ;
Tu, Jiangping ;
Yang, Deren .
MATERIALS RESEARCH BULLETIN, 2009, 44 (01) :211-215
[8]   In situ synthesis of SnO2/graphene nanocomposite and their application as anode material for lithium ion battery [J].
Du, Zhifeng ;
Yin, Xiaoming ;
Zhang, Ming ;
Hao, Quanyi ;
Wang, Yanguo ;
Wang, Taihong .
MATERIALS LETTERS, 2010, 64 (19) :2076-2079
[9]   Non-aqueous electrodeposition of porous tin-based film as an anode for lithium-ion battery [J].
Gu, C. D. ;
Mai, Y. J. ;
Zhou, J. P. ;
You, Y. H. ;
Tu, J. P. .
JOURNAL OF POWER SOURCES, 2012, 214 :200-207
[10]   SnO2 NANOCRYSTALLITE: NOVEL SYNTHETIC ROUTE FROM DEEP EUTECTIC SOLVENT AND LITHIUM STORAGE PERFORMANCE [J].
Gu, C. D. ;
Mai, Y. J. ;
Zhou, J. P. ;
Tu, J. P. .
FUNCTIONAL MATERIALS LETTERS, 2011, 4 (04) :377-381