Loss of serotonin oxidation as a component of the altered substrate specificity in the Y444F mutant of recombinant human liver MAO A

被引:28
作者
Nandigama, RK
Miller, JR
Edmondson, DE
机构
[1] Emory Univ, Sch Med, Rollins Res Ctr, Dept Biochem, Atlanta, GA 30322 USA
[2] Emory Univ, Dept Chem, Atlanta, GA 30322 USA
关键词
D O I
10.1021/bi011113d
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To investigate the roles of tyrosyl residues located near the covalent 8 alpha -S-cysteinyl FAD in monoamine oxidase A (MAO A) and to test the suggestion that MAO A and plant polyamine oxidase may have structural homology, tyrosyl to phenylalanyl mutants of MAO A at positions 377, 402, 407, 410, 419, and 444 were constructed and expressed in Saccharomyces cerevisiae. All mutant enzymes were expressed and exhibited lower specific activities as compared to WT MAO A using kynuramine as substrate. The lowest specific activities in this assay are exhibited by the Y407F and Y444F mutant enzymes. On purification and further characterization, these two mutants were found to each contain covalent FAD. Both mutant enzymes are irreversibly inhibited by the MAO A inhibitor clorgyline and exhibit binding stoichiometries of 0.54 (Y407F) and 0.95 (Y444F) as compared to 1.05 for WT MAO A. Y444F MAO A oxidizes kynuramine with a k(cat) <2% of WT enzyme and is greater than 100-fold slower in catalyzing the oxidation of phenylethylamine or of serotonin. In contrast, Y444F MAO A oxidizes p-CF3-benzylamine at a rate 25% that of WT enzyme. Steady state and reductive half-reaction stopped-flow data using a series of para-substituted benzylamine analogues show Y444F MAO A exhibits quantitative structure activity relationships (QSAR) properties on analogue binding and rates of substrate oxidation very similar to that exhibited by the WT enzyme (Miller and Edmondson (1999) Biochemistry 38, 13670): log K-d = -(0.37<plus/minus>0.07)V-W(x0.1) - 4.5 +/-0.1; log k(red) = +(2.43 +/-0.19)sigma + 0.17 +/-0.05. The Y444F MAO A mutant also exhibits similar QSAR properties on the binding of phenylalkyl side chain amine analogues as WT enzyme: log K-i = (4.37 +/-0.51)E-S + 1.21 +/-0.77. These data show that mutation of Y444F in MAO A results in a mutant that has lost its ability to efficiently oxidize serotonin (its physiological substrate) but, however, exhibits unaltered quantitative structure-activity parameters in the binding and rate of benzylamine analogues. The mechanism of C-H abstraction is therefore unaltered. The suggestion that polyamine oxidase and monoamine oxidase may have structural homology appears to be valid as regards Y444 in MAO A and Y439 in plant polyamine oxidase.
引用
收藏
页码:14839 / 14846
页数:8
相关论文
共 24 条
[1]   CDNA CLONING OF HUMAN-LIVER MONOAMINE OXIDASE-A AND OXIDASE-B - MOLECULAR-BASIS OF DIFFERENCES IN ENZYMATIC-PROPERTIES [J].
BACH, AWJ ;
LAN, NC ;
JOHNSON, DL ;
ABELL, CW ;
BEMBENEK, ME ;
KWAN, SW ;
SEEBURG, PH ;
SHIH, JC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (13) :4934-4938
[2]   ANTI-FLAVIN ANTIBODIES [J].
BARBER, MJ ;
EICHLER, DC ;
SOLOMONSON, LP ;
ACKRELL, BA .
BIOCHEMICAL JOURNAL, 1987, 242 (01) :89-95
[3]   A 30 Å long U-shaped catalytic tunnel in the crystal structure of polyamine oxidase [J].
Binda, C ;
Coda, A ;
Angelini, R ;
Federico, R ;
Ascenzi, P ;
Mattevi, A .
STRUCTURE, 1999, 7 (03) :265-276
[4]   EXPRESSION OF INTERFERON-GAMMA FROM HYBRID YEAST GPD PROMOTERS CONTAINING UPSTREAM REGULATORY SEQUENCES FROM THE GAL1-GAL10 INTERGENIC REGION [J].
BITTER, GA ;
EGAN, KM .
GENE, 1988, 69 (02) :193-207
[5]   VAN DER WAALS VOLUMES + RADII [J].
BONDI, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1964, 68 (03) :441-+
[6]   ABNORMAL-BEHAVIOR ASSOCIATED WITH A POINT MUTATION IN THE STRUCTURAL GENE FOR MONOAMINE OXIDASE-A [J].
BRUNNER, HG ;
NELEN, M ;
BREAKEFIELD, XO ;
ROPERS, HH ;
VANOOST, BA .
SCIENCE, 1993, 262 (5133) :578-580
[7]   AGGRESSIVE-BEHAVIOR AND ALTERED AMOUNTS OF BRAIN-SEROTONIN AND NOREPINEPHRINE IN MICE LACKING MAOA [J].
CASES, O ;
SEIF, I ;
GRIMSBY, J ;
GASPAR, P ;
CHEN, K ;
POURNIN, S ;
MULLER, U ;
AGUET, M ;
BABINET, C ;
SHIH, JC ;
DEMAEYER, E .
SCIENCE, 1995, 268 (5218) :1763-1766
[8]  
CHEN K, 1994, MOL PHARMACOL, V46, P1226
[9]  
FUJITA T, 1964, J AM CHEM SOC, V86, P5176
[10]  
Hansch C., 1995, Exploring QSAR-Fundamentals and Applications in Chemistry and Biology