Orbital-free bond breaking via machine learning

被引:102
作者
Snyder, John C. [1 ,2 ]
Rupp, Matthias [3 ]
Hansen, Katja [4 ]
Blooston, Leo [1 ]
Mueller, Klaus-Robert [5 ,6 ]
Burke, Kieron [1 ,2 ]
机构
[1] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Dept Phys, Irvine, CA 92697 USA
[3] ETH, Inst Pharmaceut Sci, CH-8093 Zurich, Switzerland
[4] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany
[5] Tech Univ Berlin, Machine Learning Grp, D-10587 Berlin, Germany
[6] Korea Univ, Dept Brain & Cognit Engn, Seoul 136713, South Korea
基金
美国国家科学基金会;
关键词
KINETIC-ENERGY; DENSITY FUNCTIONALS; POTENTIALS;
D O I
10.1063/1.4834075
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using a one-dimensional model, we explore the ability of machine learning to approximate the non-interacting kinetic energy density functional of diatomics. This nonlinear interpolation between Kohn-Sham reference calculations can (i) accurately dissociate a diatomic, (ii) be systematically improved with increased reference data and (iii) generate accurate self-consistent densities via a projection method that avoids directions with no data. With relatively few densities, the error due to the interpolation is smaller than typical errors in standard exchange-correlation functionals. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:10
相关论文
共 45 条
[1]  
Adams R., 1985, Sobolev Spaces
[2]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[3]   DFT in a nutshell [J].
Burke, Kieron ;
Wagner, Lucas O. .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2013, 113 (02) :96-101
[4]   Perspective on density functional theory [J].
Burke, Kieron .
JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (15)
[5]   NONLOCAL KINETIC-ENERGY FUNCTIONAL FOR NONHOMOGENEOUS ELECTRON-SYSTEMS [J].
CHACON, E ;
ALVARELLOS, JE ;
TARAZONA, P .
PHYSICAL REVIEW B, 1985, 32 (12) :7868-7877
[6]   Insights into current limitations of density functional theory [J].
Cohen, Aron J. ;
Mori-Sanchez, Paula ;
Yang, Weitao .
SCIENCE, 2008, 321 (5890) :792-794
[7]  
Dreizler R., 1990, DENSITY FUNCTIONAL T
[8]   Partition density-functional theory [J].
Elliott, Peter ;
Burke, Kieron ;
Cohen, Morrel H. ;
Wasserman, Adam .
PHYSICAL REVIEW A, 2010, 82 (02)
[9]   Nonlocal symmetrized kinetic-energy density functional: Application to simple surfaces [J].
Garcia-Gonzalez, P ;
Alvarellos, JE ;
Chacon, E .
PHYSICAL REVIEW B, 1998, 57 (08) :4857-4862
[10]   Nonlocal kinetic-energy-density functionals [J].
GarciaGonzalez, P ;
Alvarellos, JE ;
Chacon, E .
PHYSICAL REVIEW B, 1996, 53 (15) :9509-9512