Use of antisense RNA to modulate glycosyltransferase gene expression and exopolysaccharide molecular mass in Lactobacillus rhamnosus

被引:25
作者
Bouazzaoui, K. [1 ]
LaPointe, G. [1 ]
机构
[1] Univ Laval, STELA, Ctr Dairy Res, INAF, Ste Foy, PQ G1K 7P4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
antisense RNA; conditional gene expression; exopolysaccharides; Lactobacillus rhamnosus;
D O I
10.1016/j.mimet.2005.07.011
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Discovery of gene function requires inactivation in order to demonstrate the effect of the absence of gene expression on cell phenotype. As gene inactivation can be lethal, such mutations are often unattainable. Antisense RNA provides a method of reducing transcript and protein levels without totally inactivating the targeted gene, thus providing information on the gene's possible function. This study demonstrates the use of antisense RNA to modulate polysaccharide size in Lactobacillus rhamnosus, a bacterial species with technological and health applications in fermented milk products. Production of antisense RNA coding for a glycosyltransferase leads to reduced sense RNA transcript. While the total amount of polysaccharide produced was not significantly affected, size exclusion chromatography showed that polysaccharides of different molecular mass were produced in the presence of antisense RNA. Conditional control over gene expression could thus be useful for metabolic engineering strategies, where gene inactivation is not practicable. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:216 / 225
页数:10
相关论文
共 28 条
[1]  
Ausubel FM, 1995, SHORT PROTOCOLS MOL
[2]   Exopolysaccharide production during batch cultures with free and immobilized Lactobacillus rhamnosus RW-9595M [J].
Bergmaier, D ;
Champagne, CP ;
Lacroix, C .
JOURNAL OF APPLIED MICROBIOLOGY, 2003, 95 (05) :1049-1057
[3]   CARBON SOURCE REQUIREMENTS FOR EXOPOLYSACCHARIDE PRODUCTION BY LACTOBACILLUS-CASEI CG11 AND PARTIAL STRUCTURE-ANALYSIS OF THE POLYMER [J].
CERNING, J ;
RENARD, CMGC ;
THIBAULT, JF ;
BOUILLANNE, C ;
LANDON, M ;
DESMAZEAUD, M ;
TOPISIROVIC, L .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1994, 60 (11) :3914-3919
[4]   2 PLASMID-DETERMINED RESTRICTION AND MODIFICATION SYSTEMS IN STREPTOCOCCUS-LACTIS [J].
CHOPIN, A ;
CHOPIN, MC ;
MOILLOBATT, A ;
LANGELLA, P .
PLASMID, 1984, 11 (03) :260-263
[5]   Heteropolysaccharides from lactic acid bacteria [J].
De Vuyst, L ;
Degeest, B .
FEMS MICROBIOLOGY REVIEWS, 1999, 23 (02) :153-177
[6]   Metabolic engineering of sugar catabolism in lactic acid bacteria [J].
deVos, WM .
ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR MICROBIOLOGY, 1996, 70 (2-4) :223-242
[7]   A COLORIMETRIC METHOD FOR THE DETERMINATION OF SUGARS [J].
DUBOIS, M ;
GILLES, K ;
HAMILTON, JK ;
REBERS, PA ;
SMITH, F .
NATURE, 1951, 168 (4265) :167-167
[8]   Metabolic engineering of lactic acid bacteria for the production of nutraceuticals [J].
Hugenholtz, J ;
Sybesma, W ;
Groot, MN ;
Wisselink, W ;
Ladero, V ;
Burgess, K ;
van Sinderen, D ;
Piard, JC ;
Eggink, G ;
Smid, EJ ;
Savoy, G ;
Sesma, F ;
Jansen, T ;
Hols, P ;
Kleerebezem, M .
ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR MICROBIOLOGY, 2002, 82 (1-4) :217-235
[9]   ANTISENSE RNA - ITS FUNCTIONS AND APPLICATIONS IN GENE-REGULATION - A REVIEW [J].
INOUYE, M .
GENE, 1988, 72 (1-2) :25-34
[10]  
Ji YD, 2002, METHOD ENZYMOL, V358, P123