Optical spectroscopy noninvasively monitors response of organelles to cellular stress

被引:15
作者
Schuele, G
Vitkin, E
Huie, P
O'Connell-Rodwell, C
Palanker, D
Perelman, LT
机构
[1] Stanford Sch Med, Dept Ophthalmol, Stanford, CA 94305 USA
[2] Stanford Univ, Hansen Expt Phys Lab, Stanford, CA 94305 USA
[3] Harvard Univ, Sch Med, Beth Israel Deaconess Med Ctr, Dept Obstet Gynecol & Reprod Biol,Biomed Imaging, Boston, MA 02215 USA
[4] Stanford Univ, Hansen Expt Phys Lab, Stanford, CA 94305 USA
[5] Stanford Sch Med, Dept Pediat Microbiol & Immunol & Radiol, Stanford, CA 94305 USA
关键词
thermal stress; light scattering spectroscopy; heat shock protein; retinal pigment epithelium; cellular stress;
D O I
10.1117/1.2075207
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Fast and noninvasive detection of cellular stress is extremely useful for fundamental research and practical applications in medicine and biology. We discovered that light scattering spectroscopy enables us to monitor the transformations in cellular organelles under thermal stress. At the temperatures triggering expression of heat shock proteins, the refractive index of mitochondria increase within 1 min after the onset of heating, indicating enhanced metabolic activity. At higher temperatures and longer exposures, the organelles increase in size. This technique provides an insight into metabolic processes within organelles larger than 50 nm without exogenous staining and opens doors for noninvasive real-time assessment of cellular stress. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
引用
收藏
页数:8
相关论文
共 40 条
[1]   Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ [J].
Backman, V ;
Gurjar, R ;
Badizadegan, K ;
Itzkan, L ;
Dasari, RR ;
Perelman, LT ;
Feld, MS .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1999, 5 (04) :1019-1026
[2]   Detection of preinvasive cancer cells [J].
Backman, V ;
Wallace, MB ;
Perelman, LT ;
Arendt, JT ;
Gurjar, R ;
Müller, MG ;
Zhang, Q ;
Zonios, G ;
Kline, E ;
McGillican, T ;
Shapshay, S ;
Valdez, T ;
Badizadegan, K ;
Crawford, JM ;
Fitzmaurice, M ;
Kabani, S ;
Levin, HS ;
Seiler, M ;
Dasari, RR ;
Itzkan, I ;
Van Dam, J ;
Feld, MS .
NATURE, 2000, 406 (6791) :35-36
[3]  
Bohren C.F., 1998, ABSORPTION SCATTERIN
[4]   Calcium-induced alterations in mitochondrial morphology quantified in situ with optical scatter imaging [J].
Boustany, NN ;
Drezek, R ;
Thakor, NV .
BIOPHYSICAL JOURNAL, 2002, 83 (03) :1691-1700
[5]   Polarized light scattering as a rapid and sensitive assay for metal toxicity to bacteria [J].
Bronk, BV ;
Li, ZZ ;
Czégé, J .
JOURNAL OF APPLIED TOXICOLOGY, 2001, 21 (02) :107-113
[6]   Second-harmonic imaging microscopy of living cells [J].
Campagnola, PJ ;
Clark, HA ;
Mohler, WA ;
Lewis, A ;
Loew, LM .
JOURNAL OF BIOMEDICAL OPTICS, 2001, 6 (03) :277-286
[7]  
Chance B, 2004, METHOD ENZYMOL, V385, P361
[8]   Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications [J].
Cheng, JX ;
Xie, XS .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (03) :827-840
[9]   Mitochondria as the central control point of apoptosis [J].
Desagher, S ;
Martinou, JC .
TRENDS IN CELL BIOLOGY, 2000, 10 (09) :369-377
[10]   Noninvasive sizing of subcellular organelles with light scattering spectroscopy [J].
Fang, H ;
Ollero, M ;
Vitkin, E ;
Kimerer, LM ;
Cipolloni, PB ;
Zaman, MM ;
Freedman, SD ;
Bigio, IJ ;
Itzkan, I ;
Hanlon, EB ;
Perelman, LT .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2003, 9 (02) :267-276