The support reduction algorithm for computing non-parametric function estimates in mixture models

被引:46
作者
Groeneboom, Piet [1 ]
Jongbloed, Geurt [1 ]
Wellner, Jon A. [2 ]
机构
[1] Delft Univ Technol, Delft Inst Appl Math, NL-2628 CD Delft, Netherlands
[2] Univ Washington, Dept Stat, Seattle, WA 98195 USA
关键词
active set; Aspect problem; convex regression; vertex direction method;
D O I
10.1111/j.1467-9469.2007.00588.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study an algorithm (which we call the support reduction algorithm) that can be used to compute non-parametric M-estimators in mixture models. The algorithm is compared with natural competitors in the context of convex regression and the 'Aspect problem' in quantum physics.
引用
收藏
页码:385 / 399
页数:15
相关论文
共 28 条
[1]   EXPERIMENTAL TEST OF BELL INEQUALITIES USING TIME-VARYING ANALYZERS [J].
ASPECT, A ;
DALIBARD, J ;
ROGER, G .
PHYSICAL REVIEW LETTERS, 1982, 49 (25) :1804-1807
[2]   Estimating a convex function in nonparametric regression [J].
Birke, Melanie ;
Dette, Holger .
SCANDINAVIAN JOURNAL OF STATISTICS, 2007, 34 (02) :384-404
[4]   A REVIEW OF RELIABLE MAXIMUM-LIKELIHOOD ALGORITHMS FOR SEMIPARAMETRIC MIXTURE-MODELS [J].
BOHNING, D .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1995, 47 (1-2) :5-28
[5]  
Bohning D., 1986, METRIKA, V33, P337, DOI DOI 10.1007/BF01894766
[6]   PROPOSED EXPERIMENT TO TEST LOCAL HIDDEN-VARIABLE THEORIES [J].
CLAUSER, JF ;
HORNE, MA ;
SHIMONY, A ;
HOLT, RA .
PHYSICAL REVIEW LETTERS, 1969, 23 (15) :880-&
[7]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[8]  
DUMBGEN L, 2007, ARXIV07074643
[9]  
Groeneboom P, 2001, ANN STAT, V29, P1653
[10]  
Groeneboom P, 2001, ANN STAT, V29, P1620