I-band titin in cardiac muscle is a three-element molecular spring and is critical for maintaining thin filament structure

被引:200
作者
Linke, WA
Rudy, DE
Centner, T
Gautel, M
Witt, C
Labeit, S
Gregorio, CC
机构
[1] Univ Heidelberg, Inst Physiol 2, D-69120 Heidelberg, Germany
[2] Univ Arizona, Dept Anat & Cell Biol, Tucson, AZ 85724 USA
[3] European Mol Biol Lab, D-69012 Heidelberg, Germany
[4] Max Planck Inst Mol Physiol, D-44202 Dortmund, Germany
[5] Univ Heidelberg, Klinikum Mannheim, Inst Anasthesiol & Operat Intensivmed, D-68167 Mannheim, Germany
[6] Univ Arizona, Dept Mol & Cellular Biol, Tucson, AZ 85721 USA
关键词
heart muscle; connectin; elasticity; transfection; sarcomere;
D O I
10.1083/jcb.146.3.631
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
In cardiac muscle, the giant protein titin exists in different length isoforms expressed in the molecule's I-band region. Both isoforms, termed N2-A and N2-B, comprise stretches of Ig-like modules separated by the PEVK domain. Central I-band titin also contains isoform-specific Ig-motifs and nonmodular sequences, notably a longer insertion in N2-B. We investigated the elastic behavior of the I-band isoforms by using single-myofibril mechanics, immunofluorescence microscopy, and immunoelectron microscopy of rabbit cardiac sarcomeres stained with sequence-assigned antibodies. Moreover, we overexpressed constructs from the N2-B region in chick cardiac cells to search for possible structural properties of this cardiac-specific segment, We found that cardiac titin contains three distinct elastic elements: poly-Ig regions, the PEVK domain, and the N2-B sequence insertion, which extends similar to 60 nm at high physiological stretch. Recruitment of all three elements allows cardiac titin to extend fully reversibly at physiological sarcomere lengths, without the need to unfold Ig domains. Overexpressing the entire N2-B region or its NH2 terminus in cardiac myocytes greatly disrupted thin filament, but not thick filament structure. Our results strongly suggest that the NH2-terminal N2-B domains are necessary to stabilize thin filament integrity. N2-B-titin emerges as a unique region critical for both reversible extensibility and structural maintenance of cardiac myofibrils.
引用
收藏
页码:631 / 644
页数:14
相关论文
共 52 条