Conformational dynamics of trialanine in water: A molecular dynamics study

被引:79
作者
Mu, YG [1 ]
Stock, G [1 ]
机构
[1] Goethe Univ Frankfurt, Inst Phys & Theoret Chem, D-60439 Frankfurt, Germany
关键词
D O I
10.1021/jp013977e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Classical molecular dynamics (MD) studies of trialanine in aqueous solution are presented. The investigations have been inspired by recent 2D vibrational spectroscopy experiments of Woutersen and Hamm (J. Phys. Chem. B 2000, 104, 11316), who determined the structure and the conformational fluctuations of trialanine. The MD studies include various unbiased 20-ns simulations as well as umbrella sampling calculations of the potential of mean force along the central dihedral angles of trialanine. By employing the GROMOS96 force field, it is predicted that solvated trialanine is predominantly (similar to80%) found in the extended conformations beta and P-II and is also (similar to16%) found in the helix conformation alpha(R). The results are explained by analyzing the free-energy contributions of intra- and intermolecular interactions, calculating the absolute entropy of the trialanine molecule, investigating the solvation and hydrogen bonding of the peptide, and studying the transitions between the extended and helix conformations. Moreover, the vibrational cross-relaxation rates associated with the two amide I modes of trialanine are calculated. The conformational structures and dynamics obtained from the MD studies are shown to be in good overall agreement with experimental data.
引用
收藏
页码:5294 / 5301
页数:8
相关论文
共 42 条
[1]  
Allen M. P., 1987, COMPUTER SIMULATIONS, DOI [10.1093/oso/9780198803195.001.0001, DOI 10.1093/OSO/9780198803195.001.0001]
[2]   On the calculation of entropy from covariance matrices of the atomic fluctuations [J].
Andricioaei, I ;
Karplus, M .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (14) :6289-6292
[3]  
[Anonymous], 1996, MOL MODELING
[4]   Calculation of conformational transitions and barriers in solvated systems: Application to the alanine dipeptide in water [J].
Apostolakis, J ;
Ferrara, P ;
Caflisch, A .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (04) :2099-2108
[5]  
Berendsen H., 1981, INTERMOLECULAR FORCE, V331, P331, DOI [DOI 10.1007/978-94-015-7658-1_21, 10.1007/978-94-015-7658, DOI 10.1007/978-94-015-7658]
[6]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[7]   Reaction coordinates of biomolecular isomerization [J].
Bolhuis, PG ;
Dellago, C ;
Chandler, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (11) :5877-5882
[8]   Water molecules in DNA recognition II:: A molecular dynamics view of the structure and hydration of the trp operator [J].
Bonvin, AMJJ ;
Sunnerhagen, M ;
Otting, G ;
van Gunsteren, WF .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 282 (04) :859-873
[9]   SIMULATIONS OF PEPTIDE CONFORMATIONAL DYNAMICS AND THERMODYNAMICS [J].
BROOKS, CL ;
CASE, DA .
CHEMICAL REVIEWS, 1993, 93 (07) :2487-2502
[10]  
Carrington A., 1979, INTRO MAGNETIC RESON