Mouse U2af1-rs1 is a neomorphic imprinted gene

被引:86
作者
Nabetani, A
Hatada, I
Morisaki, H
Oshimura, M
Mukai, T
机构
[1] NATL CARDIOVASC CTR,RES INST,DEPT BIOSCI,SUITA,OSAKA 565,JAPAN
[2] TOTTORI UNIV,SCH LIFE SCI,YONAGO,TOTTORI 683,JAPAN
关键词
D O I
10.1128/MCB.17.2.789
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mouse U2af1-rs1 gene is an endogenous imprinted gene on the proximal region of chromosome 11. This gene is transcribed exclusively from the unmethylated paternal allele, while the methylated maternal allele is silent. An analysis of genome structure of this gene revealed that the whole gene is located in an intron of the Murr1 gene. Although none of the three human U2af1-related genes have been mapped to chromosome 2, the human homolog of Murr1 is assigned to chromosome 2. The mouse Murr1 gene is transcribed biallelically, and therefore it is not imprinted in neonatal mice. Allele-specific methylation is limited to a region around U2af1-rs1 in an intron of Murr1. These results suggest that in chromosomal homology and genomic imprinting, the Maf1-rs1 gene is distinct from the genome region surrounding it. We have proposed the neomorphic origin of the U2af1-rs1 gene by retrotransposition and the particular mechanism of genomic imprinting of ectopic genes.
引用
收藏
页码:789 / 798
页数:10
相关论文
共 49 条
[1]   GAMETE-SPECIFIC METHYLATION CORRELATES WITH IMPRINTING OF THE MURINE XIST GENE [J].
ARIEL, M ;
ROBINSON, E ;
MCCARREY, JR ;
CEDAR, H .
NATURE GENETICS, 1995, 9 (03) :312-315
[2]   GAMETIC IMPRINTING IN MAMMALS [J].
BARLOW, DP .
SCIENCE, 1995, 270 (5242) :1610-1613
[3]   PCR AMPLIFICATION OF UP TO 35-KB DNA WITH HIGH-FIDELITY AND HIGH-YIELD FROM LAMBDA-BACTERIOPHAGE TEMPLATES [J].
BARNES, WM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (06) :2216-2220
[4]   EPIGENETIC MECHANISMS UNDERLYING THE IMPRINTING OF THE MOUSE H19-GENE [J].
BARTOLOMEI, MS ;
WEBBER, AL ;
BRUNKOW, ME ;
TILGHMAN, SM .
GENES & DEVELOPMENT, 1993, 7 (09) :1663-1673
[5]   THE ONTOGENY OF ALLELE-SPECIFIC METHYLATION ASSOCIATED WITH IMPRINTED GENES IN THE MOUSE [J].
BRANDEIS, M ;
KAFRI, T ;
ARIEL, M ;
CHAILLET, JR ;
MCCARREY, J ;
RAZIN, A ;
CEDAR, H .
EMBO JOURNAL, 1993, 12 (09) :3669-3677
[6]   EFFECTIVE AMPLIFICATION OF LONG TARGETS FROM CLONED INSERTS AND HUMAN GENOMIC DNA [J].
CHENG, S ;
FOCKLER, C ;
BARNES, WM ;
HIGUCHI, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (12) :5695-5699
[7]   NEOMORPHIC AGOUTI MUTATIONS IN OBESE YELLOW MICE [J].
DUHL, DMJ ;
VRIELING, H ;
MILLER, KA ;
WOLFF, GL ;
BARSH, GS .
NATURE GENETICS, 1994, 8 (01) :59-65
[8]   A TECHNIQUE FOR RADIOLABELING DNA RESTRICTION ENDONUCLEASE FRAGMENTS TO HIGH SPECIFIC ACTIVITY [J].
FEINBERG, AP ;
VOGELSTEIN, B .
ANALYTICAL BIOCHEMISTRY, 1983, 132 (01) :6-13
[9]   PARENTAL-ORIGIN-SPECIFIC EPIGENETIC MODIFICATION OF THE MOUSE H19 GENE [J].
FERGUSONSMITH, AC ;
SASAKI, H ;
CATTANACH, BM ;
SURANI, MA .
NATURE, 1993, 362 (6422) :751-755
[10]   ALLELE-SPECIFIC INACTIVATION OF INSULIN-1 AND INSULIN-2, IN THE MOUSE YOLK-SAC, INDICATES IMPRINTING [J].
GIDDINGS, SJ ;
KING, CD ;
HARMAN, KW ;
FLOOD, JF ;
CARNAGHI, LR .
NATURE GENETICS, 1994, 6 (03) :310-313