atom transfer radical polymerization;
graft polymerization;
magnetic nanoparticle;
D O I:
10.1016/j.polymer.2004.02.005
中图分类号:
O63 [高分子化学(高聚物)];
学科分类号:
070305 ;
080501 ;
081704 ;
摘要:
The synthesis of magnetite nanoparticles coated with a well-defined graft polymer is reported. The magnetite nanoparticles with an initiator group for copper-mediated atom transfer radical polymerization (ATRP), 2-(4-chlorosulfonylphenyl) ethyltrichlorosilane (CTCS) chemically bound on their surfaces were prepared by the self-assembled monolayer-deposition method. The surface-initiated ATRP of methyl methacrylate (MMA) was carried out with the CTCS-coated magnetite nanoparticles in the presence of free (sacrificing) initiator, p-toluenesulfonyl chloride. Polymerization proceeded in a living fashion, exhibiting first-order kinetics of monomer consumption and a proportional relationship between molecular weight of the graft polymer and monomer conversion, thus providing well-defined, low-polydispersity graft polymers with an approximate graft density of 0.7 chains/nm(2). The molecular weight and polydispersity of the graft polymer were nearly equal to those of the free polymer produced in the solution, meaning that the free polymer is a good measure of the characteristics of the graft polymer. The graft polymer possessed exceptionally high stability and remarkably improved dispersibility of the magnetite nanoparticles in organic solvent. (C) 2004 Published by Elsevier Ltd.