Extended Jordanian twists for Lie algebras

被引:76
作者
Kulish, PP
Lyakhovsky, VD
Mudrov, AI
机构
[1] VA Steklov Math Inst, St Petersburg Dept, St Petersburg 191011, Russia
[2] St Petersburg State Univ, Dept Phys, St Petersburg 198904, Russia
[3] St Petersburg State Univ, Inst Phys, St Petersburg 198904, Russia
关键词
D O I
10.1063/1.532987
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Jordanian quantizations of Lie algebras are studied using the factorizable twists. For a restricted Borel subalgebra B-boolean OR of sl(N) the explicit expressions are obtained for the twist element F, universal R-matrix and the corresponding canonical element T. It is shown that the twisted Hopf algebra U-F(B-boolean OR) is self-dual. The cohomological properties of the involved Lie bialgebras are studied to justify the existence of a contraction from the Dinfeld-Jimbo quantization to the Jordanian one. The construction of the twist is generalized to a certain type of inhomogenious Lie algebras.(C) 1999 American Institute of Physics. [S0022-2488(99)02707-3].
引用
收藏
页码:4569 / 4586
页数:18
相关论文
共 33 条
[1]  
ABDESSELAM B, QALG9706033
[2]   GENERALIZATION OF THE H-DEFORMATION TO HIGHER DIMENSIONS [J].
ALISHAHIHA, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (21) :6187-6192
[3]   Non-standard quantum (1+1) Poincare group: A T-matrix approach [J].
Ballesteros, A ;
Herranz, FJ ;
delOlmo, MA ;
Perena, CM ;
Santander, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (24) :7113-7125
[4]   DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :61-110
[5]  
Belavin AA., 1984, Mathematical Physics Reviews, P93
[6]  
BURBAKI N, 1970, ELEMENTS MATH ALGEBR, V52, pCH4
[7]  
Chari V., 1995, A Guide to Quantum Groups
[8]   Twisted h-spacetimes and invariant equations [J].
deAzcarraga, JA ;
Kulish, PP ;
Rodenas, F .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1997, 76 (03) :567-576
[9]  
Drinfeld V.G., 1990, Leningrad Math. J., V1, P1419
[10]  
Drinfeld V G, 1987, P INT C MATH BERKELE, V1, P798