A note on the ergodicity of non-linear autoregressive model

被引:22
作者
An, HZ
Chen, SG
机构
[1] ACAD SINICA,INST APPL MATH,BEIJING 100080,PEOPLES R CHINA
[2] INST APPL PHYS & COMPUTAT MATH,BEIJING 100088,PEOPLES R CHINA
关键词
Markov chain; ergodicity; geometric ergodicity; non-linear autoregressive model;
D O I
10.1016/S0167-7152(96)00204-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We examine the Markov chain X-t=Phi(Xt-1)+epsilon(t)b, where X-t=(x(t),..., x(t-p+1))(tau), b=(1,0,...,0)(tau). Under some appropriate conditions on Phi, we show the ergodicity for (X-t) when E epsilon(t)(2) is suitable small, and the geometric ergodicity when Ee(\epsilon r\) is suitably small.
引用
收藏
页码:365 / 372
页数:8
相关论文
共 5 条
[1]   ON GEOMETRIC ERGODICITY OF NONLINEAR AUTOREGRESSIVE MODELS [J].
BHATTACHARYA, R ;
LEE, CH .
STATISTICS & PROBABILITY LETTERS, 1995, 22 (04) :311-315
[2]   ON THE USE OF THE DETERMINISTIC LYAPUNOV FUNCTION FOR THE ERGODICITY OF STOCHASTIC DIFFERENCE-EQUATIONS [J].
CHAN, KS ;
TONG, H .
ADVANCES IN APPLIED PROBABILITY, 1985, 17 (03) :666-678
[3]  
Nummelin E., 1984, GEN IRREDUCIBLE MARK, V83
[4]   NONLINEAR TIME-SERIES AND MARKOV-CHAINS [J].
TJOSTHEIM, D .
ADVANCES IN APPLIED PROBABILITY, 1990, 22 (03) :587-611
[5]  
Tong H., 1990, Non-Linear Time Series: A Dynamical System Approach