Performance of the thistle gall fly, Urophora cardui, in relation to host plant nitrogen and mycorrhizal colonization

被引:54
作者
Gange, AC
Nice, HE
机构
[1] School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, Egham Hill
关键词
nutrition hypothesis; gall-insect; arbuscular Mycorrhiza; Cirsium arvense; Urophora cardui;
D O I
10.1046/j.1469-8137.1997.00813.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Many hypotheses have been developed to explain the adaptive nature of insect galls. One of these, the nutrition hypothesis, states that gall formers have advantages over other insects because gall tissue provides a better (higher quality) food source than unmodified tissue. However, this has rarely been experimentally tested. In a test of this hypothesis, we grew plants of Cirsium arvense (L.) Scop. in a factorial design with two main treatments: the addition of nitrogen (to enhance foliar N levels) and of fungicide (to reduce colonization of roots by arbuscular mycorrhizal fungi). Mycorrhizal fungi have been shown previously to reduce the N concentration of host plants. Plants were exposed to adult gall flies, Urophora cardui L., and maintained through one season to allow maturation of galls. Reduction of the percentage mycorrhizal colonization by fungicide resulted in an elevation of total stem N comparable to that achieved by N addition, but gall pi concentration remained unchanged in all treatments. Nitrogen application elevated stem N levels when mycorrhizal fungi were present, but application of both compounds together did not result in any increase over either single treatment. Fungicide application resulted in larger galls, which contained more larval chambers, with more live, and heavier, larvae. However, the main effects of N were not significant, as N addition only increased fly performance on plants where mycorrhizas were not reduced. It is suggested that U. cardui gall inhabitants can manipulate N at an optimal level and thus might conform to a modified version of the nutrition hypothesis. Mycorrhizal colonization might reduce gall fly performance by delaying the appearance, or impairing the quality, of secondary nutritive tissue in the gall. Future tests of the nutrition hypothesis should include a consideration of the plant's mycorrhizal status.
引用
收藏
页码:335 / 343
页数:9
相关论文
共 44 条
[1]   NUTRIENT AND BIOMASS ALLOCATION IN SOLIDAGO-ALTISSIMA - EFFECTS OF 2 STEM GALLMAKERS, FERTILIZATION, AND RAMET ISOLATION [J].
ABRAHAMSON, WG ;
MCCREA, KD .
OECOLOGIA, 1986, 68 (02) :174-180
[2]   THE ROLE OF PHENOLICS IN GOLDENROD BALL GALL RESISTANCE AND FORMATION [J].
ABRAHAMSON, WG ;
MCCREA, KD ;
WHITWELL, AJ ;
VERNIERI, LA .
BIOCHEMICAL SYSTEMATICS AND ECOLOGY, 1991, 19 (08) :615-622
[3]   EFFECTS OF MANIPULATION OF PLANT CARBON NUTRIENT BALANCE ON TALL GOLDENROD RESISTANCE TO A GALLMAKING HERBIVORE [J].
ABRAHAMSON, WG ;
ANDERSON, SS ;
MCCREA, KD .
OECOLOGIA, 1988, 77 (03) :302-306
[4]  
ALLEN SE, 1989, CHEM ANAL ECOLOGICAL
[5]   GALL-FORMING INSECT DIVERSITY IS LINKED TO SOIL FERTILITY VIA HOST-PLANT TAXON [J].
BLANCHE, KR ;
WESTOBY, M .
ECOLOGY, 1995, 76 (07) :2334-2337
[6]  
Bronner R., 1992, P118
[7]   MYCORRHIZAS IN NATURAL ECOSYSTEMS [J].
BRUNDRETT, M .
ADVANCES IN ECOLOGICAL RESEARCH, 1991, 21 :171-313
[8]   LIPID PHYSIOLOGY OF VESICULAR-ARBUSCULAR MYCORRHIZA .1. COMPOSITION OF LIPIDS IN ROOTS OF ONION, CLOVER AND RYEGRASS INFECTED WITH GLOMUS-MOSSEAE [J].
COOPER, KM ;
LOSEL, DM .
NEW PHYTOLOGIST, 1978, 80 (01) :143-+
[9]  
Crawley MJ., 1993, GLIM ECOLOGISTS
[10]   PLANT STRESS AND LARVAL PERFORMANCE OF A DIPTEROUS GALL FORMER [J].
DEBRUYN, L .
OECOLOGIA, 1995, 101 (04) :461-466