Morphological classification of galaxies by shapelet decomposition in the Sloan Digital Sky Survey

被引:47
作者
Kelly, BC
McKay, TA
机构
[1] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA
[2] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
关键词
galaxies : fundamental parameters; galaxies : statistics; methods : data analysis; methods : statistical; techniques : image processing;
D O I
10.1086/380934
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We describe application of the "shapelet'' linear decomposition of galaxy images to morphological classification using images of similar to 3000 galaxies from the Sloan Digital Sky Survey. After decomposing the galaxies, we perform a principal component analysis to reduce the number of dimensions of the shapelet space to nine. We find that each of these nine principal components contains unique morphological information and give a description of each principal component's contribution to a galaxy's morphology. We find that galaxies of differing Hubble type separate cleanly in the shapelet space. We apply a Gaussian mixture model to the nine-dimensional space spanned by the principal components and use the results as a basis for classification. Using the mixture model, we separate galaxies into seven classes and give a description of each class' physical and morphological properties. We find that several of the mixture model classes correlate well with the traditional Hubble types both in their morphology and their physical parameters ( e. g., color, velocity dispersions, etc.). In addition, we find an additional class of late-type morphology but with high velocity dispersions and very blue color; most of these galaxies exhibit poststarburst activity. This method provides an objective and quantitative alternative to traditional and subjective visual classification.
引用
收藏
页码:625 / 645
页数:21
相关论文
共 57 条
[21]  
Friedman J., 2001, The elements of statistical learning, V1, DOI DOI 10.1007/978-0-387-21606-5
[22]   The Sloan digital sky survey photometric system [J].
Fukugita, M ;
Ichikawa, T ;
Gunn, JE ;
Doi, M ;
Shimasaku, K ;
Schneider, DP .
ASTRONOMICAL JOURNAL, 1996, 111 (04) :1748-1756
[23]   Morphological classification of galaxies using computer vision and artificial neural networks: A computational scheme [J].
Goderya, SN ;
Lolling, SM .
ASTROPHYSICS AND SPACE SCIENCE, 2002, 279 (04) :377-387
[24]   The Sloan Digital Sky Survey photometric camera [J].
Gunn, JE ;
Carr, M ;
Rockosi, C ;
Sekiguchi, M ;
Berry, K ;
Elms, B ;
de Haas, E ;
Ivezic, Z ;
Knapp, G ;
Lupton, R ;
Pauls, G ;
Simcoe, R ;
Hirsch, R ;
Sanford, D ;
Wang, S ;
York, D ;
Harris, F ;
Annis, J ;
Bartozek, L ;
Boroski, W ;
Bakken, J ;
Haldeman, M ;
Kent, S ;
Holm, S ;
Holmgren, D ;
Petravick, D ;
Prosapio, A ;
Rechenmacher, R ;
Doi, M ;
Fukugita, M ;
Shimasaku, K ;
Okada, N ;
Hull, C ;
Siegmund, W ;
Mannery, E ;
Blouke, M ;
Heidtman, D ;
Schneider, D ;
Lucinio, R ;
Brinkman, J .
ASTRONOMICAL JOURNAL, 1998, 116 (06) :3040-3081
[25]   A photometricity and extinction monitor at the Apache Point Observatory [J].
Hogg, DW ;
Finkbeiner, DP ;
Schlegel, DJ ;
Gunn, JE .
ASTRONOMICAL JOURNAL, 2001, 122 (04) :2129-2138
[26]   The trouble with Hubble types in the Virgo Cluster [J].
Koopmann, RA ;
Kenney, JDP .
ASTROPHYSICAL JOURNAL, 1998, 497 (02) :L75-L79
[27]  
Kormendy J., 1982, MORPHOLOGY DYNAMICS, P113
[28]  
MASSEY RJ, 2003, IN PRESS MNRAS
[29]   DISCUSSION OF GALAXIES IDENTIFIED WITH RADIO SOURCES [J].
MATTHEWS, TA ;
SCHMIDT, M ;
MORGAN, WW .
ASTROPHYSICAL JOURNAL, 1964, 140 (01) :35-&
[30]   Modeling the spectral energy distribution of galaxies - II. Disk opacity and star formation in 5 edge-on spirals [J].
Misiriotis, A ;
Popescu, CC ;
Tuffs, R ;
Kylafis, ND .
ASTRONOMY & ASTROPHYSICS, 2001, 372 (03) :775-783