Pure-culture growth of fermentative bacteria, facilitated by H2 removal:: Bioenergetics and H2 production

被引:37
作者
Adams, CJ
Redmond, MC
Valentine, DL [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Earth Sci, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Inst Marine Sci, Santa Barbara, CA 93106 USA
[3] Univ Calif San Diego, Div Marine Biol Res, Scripps Inst Oceanog, San Diego, CA 92103 USA
[4] Univ Calif San Diego, Dept Chem & Biochem, San Diego, CA 92103 USA
[5] Univ Calif Santa Barbara, Grad Program Marine Sci, Santa Barbara, CA 93106 USA
关键词
D O I
10.1128/AEM.72.2.1079-1085.2006
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We used an H-2-purging culture vessel to replace an H-2-consuming syntrophic partner, allowing the growth of pure cultures of Syntrophothermus lipocalidus on butyrate and Aminobacterium colombiense on alanine. By decoupling the syntrophic association, it was possible to manipulate and monitor the single organism's growth environment and determine the change in Gibbs free energy yield (Delta G) in response to changes in the concentrations of reactants and products, the purging rate, and the temperature. In each of these situations, H, production changed such that Delta G remained nearly constant for each organism (-11.1 +/- 1.4 kJ mol butyrate(-1) for S. lipocalidus and -58.2 +/- 1.0 kJ mol alanine(-1) for A. colombiense). The cellular maintenance energy, determined from the Delta G value and the hydrogen production rate at the point where the cell number was constant, was 4.6 X 10(-13) kJ cell(-1) day(-1) for S. lipocalidus at 55 degrees C and 6.2 x 10(-13) kJ cell(-1) day(-1) for A. colombiense at 37 degrees C. S. lipocalidus, in particular, seems adapted to thrive under conditions of low energy availability.
引用
收藏
页码:1079 / 1085
页数:7
相关论文
共 33 条
[1]  
[Anonymous], 1985, HDB CHEM PHYS
[2]   Aminobacterium colombiense gen. nov. sp. nov., an amino acid-degrading anaerobe isolated from anaerobic sludge [J].
Baena, S ;
Fardeau, ML ;
Labat, M ;
Ollivier, B ;
Thomas, P ;
Garcia, JL ;
Patel, BKC .
ANAEROBE, 1998, 4 (05) :241-250
[3]   DIFFUSION OF THE INTERSPECIES ELECTRON CARRIERS H-2 AND FORMATE IN METHANOGENIC ECOSYSTEMS AND ITS IMPLICATIONS IN THE MEASUREMENT OF KM FOR H-2 OR FORMATE UPTAKE [J].
BOONE, DR ;
JOHNSON, RL ;
LIU, Y .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1989, 55 (07) :1735-1741
[4]   BACTERIAL BIOVOLUME AND BIOMASS ESTIMATIONS [J].
BRATBAK, G .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1985, 49 (06) :1488-1493
[5]   Methanogenium marinum sp nov., a H2-using methanogen from Skan Bay, Alaska, and kinetics of H2 utilization [J].
Chong, SC ;
Liu, YT ;
Cummins, M ;
Valentine, DL ;
Boone, DR .
ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR MICROBIOLOGY, 2002, 81 (1-4) :263-270
[6]   INFLUENCE OF TEMPERATURE ON ENERGETICS OF HYDROGEN METABOLISM IN HOMOACETOGENIC, METHANOGENIC, AND OTHER ANAEROBIC-BACTERIA [J].
CONRAD, R ;
WETTER, B .
ARCHIVES OF MICROBIOLOGY, 1990, 155 (01) :94-98
[7]   BIOENERGETIC CONDITIONS OF BUTYRATE METABOLISM BY A SYNTROPHIC, ANAEROBIC BACTERIUM IN COCULTURE WITH HYDROGEN-OXIDIZING METHANOGENIC AND SULFIDOGENIC BACTERIA [J].
DWYER, DF ;
WEEGAERSSENS, E ;
SHELTON, DR ;
TIEDJE, JM .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1988, 54 (06) :1354-1359
[8]   Benzoate fermentation by the anaerobic bacterium Syntrophus aciditrophicus in the absence of hydrogen-using microorganisms [J].
Elshahed, MS ;
McInerney, MJ .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (12) :5520-5525
[9]  
FUKUDA R, 1998, APPL ENVIRON MICROB, V64, P3252
[10]   Biological energy requirements as quantitative boundary conditions for life in the subsurface [J].
Hoehler, T. M. .
GEOBIOLOGY, 2004, 2 (04) :205-215