The calibration method for the Mumford-Shah functional

被引:8
作者
Alberti, G
Bouchitté, G
Dal Maso, G
机构
[1] Dipartimento Matemat, I-56127 Pisa, Italy
[2] Univ Toulon & Var, F-83957 La Garde, France
[3] SISSA, I-34014 Trieste, Italy
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1999年 / 329卷 / 03期
关键词
D O I
10.1016/S0764-4442(00)88602-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Note we adapt the calibration method to functionals of Mumford-Shah type, and provide a criterion (Theorem I) to verify that a given function is energy minimizing. Among other applications, we use this criterion to show that certain triple-junction configurations are minimizing (Example 3). (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:249 / 254
页数:6
相关论文
共 8 条
[1]  
ALBERTI G, UNPUB CALIBRATION ME
[2]   EXISTENCE THEORY FOR A NEW CLASS OF VARIATIONAL-PROBLEMS [J].
AMBROSIO, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 111 (04) :291-322
[3]  
AMBROSIO L, UNPUB SPECIAL FUNCTI
[4]   EXISTENCE THEOREM FOR A MINIMUM PROBLEM WITH FREE DISCONTINUITY SET [J].
DEGIORGI, E ;
CARRIERO, M ;
LEACI, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1989, 108 (03) :195-218
[5]   REAL FLAT CHAINS, COCHAINS AND VARIATIONAL PROBLEMS [J].
FEDERER, H .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1974, 24 (04) :351-407
[6]  
MOREL JM, 1995, PROGR NONLIN DIFFER, V14
[7]  
MORGAN F, 1990, PROGR NONLINEAR DIFF, V4, P329
[8]   OPTIMAL APPROXIMATIONS BY PIECEWISE SMOOTH FUNCTIONS AND ASSOCIATED VARIATIONAL-PROBLEMS [J].
MUMFORD, D ;
SHAH, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (05) :577-685