General and Facile Method To Prepare Uniform Y2O3:Eu Hollow Microspheres

被引:176
作者
Jia, Guang
Yang, Mei
Song, Yanhua
You, Hongpeng [1 ]
Zhang, Hongjie
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, Peoples R China
基金
中国国家自然科学基金;
关键词
COLLOIDAL CARBON SPHERES; CORE-SHELL; LUMINESCENCE PROPERTIES; SPHERICAL-PARTICLES; MONODISPERSE; SNO2; PHOTOLUMINESCENCE; NANOPARTICLES; NANOSPHERES; FABRICATION;
D O I
10.1021/cg8004823
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Well-shaped Y2O3:Eu hollow microspheres have been successfully prepared on a large scale via a urea-based homogeneous precipitation technique in the presence of colloidal carbon spheres as hard templates followed by a subsequent heat treatment process. XRD results demonstrate that all the diffraction peaks of the samples can be well indexed to the pure cubic phase Of Y2O3. TEM and SEM images indicate that the shell of the uniform hollow spheres, whose diameters are about 250 nm, is composed of many uniform nanoparticles with diameters of about 20 nm, basically consistent with the estimation of XRD results. Furthermore, the main process in this method was carried out in aqueous condition, without the use of organic solvents or etching agents. The as-prepared hollow Y2O3:Eu microspheres show a strong red emission corresponding to the D-5(0)-F-7(2) transition of the Eu3+ ions under ultraviolet or low voltage excitation, which might find potential applications in fields such as light phosphor powders, advanced flat panel displays, field emission display devices, and biological labeling.
引用
收藏
页码:301 / 307
页数:7
相关论文
共 50 条
[1]   PREPARATION AND PROPERTIES OF MONODISPERSED COLLOIDAL PARTICLES OF LANTHANIDE COMPOUNDS .3. YTTRIUM(III) AND MIXED YTTRIUM(III)-CERIUM(III) SYSTEMS [J].
AIKEN, B ;
HSU, WP ;
MATIJEVIC, E .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1988, 71 (10) :845-853
[2]   Highly monodisperse zirconia-coated silica spheres and zirconia/silica hollow spheres with remarkable textural properties [J].
Arnal, Pablo M. ;
Weidenthaler, Claudia ;
Schueth, Ferdi .
CHEMISTRY OF MATERIALS, 2006, 18 (11) :2733-2739
[3]   Facile synthesis of hollow nickel submicrometer spheres [J].
Bao, JC ;
Liang, YY ;
Xu, Z ;
Si, L .
ADVANCED MATERIALS, 2003, 15 (21) :1832-1835
[4]   Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating [J].
Caruso, F ;
Caruso, RA ;
Möhwald, H .
SCIENCE, 1998, 282 (5391) :1111-1114
[5]   A method for the fabrication of monodisperse hollow silica spheres [J].
Chen, M ;
Wu, LM ;
Zhou, SX ;
You, B .
ADVANCED MATERIALS, 2006, 18 (06) :801-+
[6]   RANGE OF 1-10 KEV ELECTRONS IN SOLIDS [J].
FELDMAN, C .
PHYSICAL REVIEW, 1960, 117 (02) :455-459
[7]   Facile route to Zn-based II-VI semiconductor spheres, hollow spheres, and core/shell nanocrystals and their optical properties [J].
Geng, Jun ;
Liu, Bo ;
Xu, Lang ;
Hu, Fang-Neng ;
Zhu, Jun-Jie .
LANGMUIR, 2007, 23 (20) :10286-10293
[8]   Homogeneous, core-shell, and hollow-shell ZnS colloid-based photonic crystals [J].
Hosein, Ian D. ;
Liddell, Chekesha M. .
LANGMUIR, 2007, 23 (05) :2892-2897
[9]  
HUA H, 2004, ANGEW CHEM INT EDIT, V43, P5205
[10]   Polymer hollow particles with controllable holes in their surfaces [J].
Im, SH ;
Jeong, UY ;
Xia, YN .
NATURE MATERIALS, 2005, 4 (09) :671-675