The thermal equilibrium solution of a generic bipolar quantum hydrodynamic model

被引:52
作者
Unterreiter, A
机构
[1] Fachbereich Mathematik, Universität Kaiserslautern, D-67653 Kaiserslautern, Erwin-Schrödinger-Straße
关键词
D O I
10.1007/s002200050157
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The thermal equilibrium state of a bipolar, isothermic quantum fluid confined to a bounded domain Omega subset of R-d, d = 1,2 or d = 3 is entirely described by the particle densities n, p, minimizing the energy epsilon(2) integral \del root n\(2) + epsilon(2) integral \del root p\(2) + integral G(1)(n) + integral G(2)(p) + lambda(2)/2 integral \del V[n-p-C]\(2), where G(1,2) are strictly convex real valued functions, -lambda(2) Delta V = n-p-C, with integral(n-p-C) = integral V = 0. It is shown that this variational problem has a unique minimizer in {(n, p) is an element of L-1(Omega) x L-1(Omega); n, p greater than or equal to 0, root n, root p is an element of H-1(Omega), integral n = N, integral p = P} and some regularity results are proven. The semi-classical limit epsilon --> 0 is carried out recovering the minimizer of the limiting functional. The subsequent zero space charge limit lambda --> 0 leads to extensions of the classical boundary conditions. Due to the lack of regularity the asymptotics lambda --> 0 can not be settled on Sobolev embedding arguments. The limit is carried out by means of a compactness-by-convexity principle.
引用
收藏
页码:69 / 88
页数:20
相关论文
共 19 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]   QUANTUM CORRECTION TO THE EQUATION OF STATE OF AN ELECTRON-GAS IN A SEMICONDUCTOR [J].
ANCONA, MG ;
IAFRATE, GJ .
PHYSICAL REVIEW B, 1989, 39 (13) :9536-9540
[3]  
[Anonymous], 1983, KLASSISCHE ELEKTRODY
[4]  
[Anonymous], WEAKLY DIFFERENTIABL
[5]  
[Anonymous], 1983, ANN MATH STUDIES
[6]  
Arnold A., 1991, Mathematical Models & Methods in Applied Sciences, V1, P83, DOI 10.1142/S021820259100006X
[7]  
BREZIS H, 1993, 93011 R U PIERR MAR, P4
[8]  
BREZZI F, 1984, FUNDAMENTALS PDE NUM, P5
[9]   DENSITIES, DENSITY-FUNCTIONALS AND ELECTRON FLUIDS [J].
GHOSH, SK ;
DEB, BM .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1982, 92 (01) :1-44
[10]  
Gilbar D., 1983, ELLIPTIC PARTIAL DIF