Ultra-relativistic electrons in Jupiter's radiation belts

被引:113
作者
Bolton, SJ
Janssen, M
Thorne, R
Levin, S
Klein, M
Gulkis, S
Bastian, T
Sault, R
Elachi, C
Hofstadter, M
Bunker, A
Dulk, G
Gudim, E
Hamilton, G
Johnson, WTK
Leblanc, Y
Liepack, O
McLeod, R
Roller, J
Roth, L
West, R
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[2] Univ Calif Los Angeles, Dept Atmospher Sci, Los Angeles, CA 90024 USA
[3] Natl Radio Astron Observ, Charlottesville, VA 24944 USA
[4] Australia Telescope Natl Facil, Epping, NSW 1710, Australia
[5] Observ Paris, Dept Space Res, F-92195 Meudon, France
[6] Lewis Ctr Educ Res, Apple Valley, CA 92307 USA
基金
美国国家航空航天局;
关键词
D O I
10.1038/415987a
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ground-based observations have shown that Jupiter is a two-component source of microwave radio emission(1): thermal atmospheric emission and synchrotron emission(2) from energetic electrons spiralling in Jupiter's magnetic field. Later in situ measurements(3,4) confirmed the existence of Jupiter's high-energy electron-radiation belts, with evidence for electrons at energies up to 20 MeV. Although most radiation belt models predict electrons at higher energies(5,6), adiabatic diffusion theory can account only for energies up to around 20 MeV. Unambiguous evidence for more energetic electrons is lacking. Here we report observations of 13.8 GHz synchrotron emission that confirm the presence of electrons with energies up to 50 MeV; the data were collected during the Cassini fly-by of Jupiter. These energetic electrons may be repeatedly accelerated through an interaction with plasma waves, which can transfer energy into the electrons. Preliminary comparison of our data with model results suggests that electrons with energies of less than 20 MeV are more numerous than previously believed.
引用
收藏
页码:987 / 991
页数:5
相关论文
共 25 条
[1]  
BERGE GL, 1976, JUPITER, P621
[2]   Multi-frequency radio observations of Jupiter at Effelsberg during the SL9 impact [J].
Bird, MK ;
Funke, O ;
Neidhofer, J ;
dePater, I .
ICARUS, 1996, 121 (02) :450-456
[3]   Divine-Garrett model and Jovian synchrotron emission [J].
Bolton, SJ ;
Levin, SM ;
Gulkis, SL ;
Klein, MJ ;
Sault, RJ ;
Bhattacharya, B ;
Thorne, RM ;
Dulk, GA ;
Leblanc, Y .
GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (05) :907-910
[4]   CORRELATION STUDIES BETWEEN SOLAR-WIND PARAMETERS AND THE DECIMETRIC RADIO-EMISSION FROM JUPITER [J].
BOLTON, SJ ;
GULKIS, S ;
KLEIN, MJ ;
DEPATER, I ;
THOMPSON, TJ .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1989, 94 (A1) :121-128
[5]  
BOLTON SJ, 1995, GEOPHYS RES LETT, V22, P13
[6]  
BURKE FB, 1955, J GEOPHYS RES, V60, P213
[7]   FAST observations in the downward auroral current region: Energetic upgoing electron beams, parallel potential drops, and ion heating [J].
Carlson, CW ;
McFadden, JP ;
Ergun, RE ;
Temerin, M ;
Peria, W ;
Mozer, FS ;
Klumpar, DM ;
Shelley, EG ;
Peterson, WK ;
Moebius, E ;
Elphic, R ;
Strangeway, R ;
Cattell, C ;
Pfaff, R .
GEOPHYSICAL RESEARCH LETTERS, 1998, 25 (12) :2017-2020
[8]  
CORONITI FV, 1975, MAGNETOSPHERES EARTH, P391
[9]   RADIAL DIFFUSION-MODELS OF ENERGETIC ELECTRONS AND JUPITERS SYNCHROTRON RADIATION .1. STEADY-STATE SOLUTION [J].
DEPATER, I ;
GOERTZ, CK .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1990, 95 (A1) :39-50
[10]   CHARGED-PARTICLE DISTRIBUTIONS IN JUPITERS MAGNETOSPHERE [J].
DIVINE, N ;
GARRETT, HB .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1983, 88 (NA9) :6889-6903