Biosynthesis, transport, and modification of lipid A

被引:85
作者
Trent, MS [1 ]
机构
[1] E Tennessee State Univ, Dept Microbiol, JH Quillen Coll Med, Johnson City, TN 37614 USA
关键词
lipopolysaccharides; lipid A; endotoxin; outer membrane; MsbA;
D O I
10.1139/o03-070
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Lipopolysaccharide (LPS) is the major surface molecule of Gram-negative bacteria and consists of three distinct structural domains: O-antigen, core, and lipid A. The lipid A (endotoxin) domain of LPS is a unique, glucosamine-based phospholipid that serves as the hydrophobic anchor of LPS and is the bioactive component of the molecule that is associated with Gram-negative septic shock. The structural genes encoding the enzymes required for the biosynthesis of Escherchia coli lipid A have been identified and characterized. Lipid A is often viewed as a constitutively synthesized structural molecule. However, determination of the exact chemical structures of lipid A from diverse Gram-negative bacteria shows that the molecule can be further modified in response to environmental stimuli. These modifications have been implicated in virulence of pathogenic Gram-negative bacteria and represent one of the molecular mechanisms of microbial surface remodeling used by bacteria to help evade the innate immune response. The intent of this review is to discuss the enzymatic machinery involved in the biosynthesis of lipid A, transport of the molecule, and finally, those enzymes involved in the modification of its structure in response to environmental stimuli.
引用
收藏
页码:71 / 86
页数:16
相关论文
共 161 条
[1]   Toll-like receptors in the induction of the innate immune response [J].
Aderem, A ;
Ulevitch, RJ .
NATURE, 2000, 406 (6797) :782-787
[2]   Bacterial lipopolysaccharides and innate immunity [J].
Alexander, C ;
Rietschel, ET .
JOURNAL OF ENDOTOXIN RESEARCH, 2001, 7 (03) :167-202
[3]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[4]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[5]  
ANDERSON MS, 1993, J BIOL CHEM, V268, P19858
[6]   Novel variation of lipid A structures in strains of different Yersinia species [J].
Aussel, L ;
Thérisod, H ;
Karibian, D ;
Perry, MB ;
Bruneteau, M ;
Caroff, M .
FEBS LETTERS, 2000, 465 (01) :87-92
[7]   The Escherichia coli gene encoding the UDP-2,3-diacylglucosamine pyrophosphatase of lipid A biosynthesis. [J].
Babinski, KJ ;
Ribeiro, AA ;
Raetz, CRH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (29) :25937-25946
[8]   Accumulation of the lipid A precursor UDP-2,3-diacylglucosamine in an Escherichia coli mutant lacking the lpxH gene. [J].
Babinski, KJ ;
Kanjilal, SJ ;
Raetz, CRH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (29) :25947-25956
[9]   The Salmonella typhi melittin resistance gene pqaB affects intracellular growth in PMA-differentiated U937 cells, polymyxin B resistance and lipopolysaccharide [J].
Baker, SJ ;
Gunn, JS ;
Morona, R .
MICROBIOLOGY-SGM, 1999, 145 :367-378
[10]   A phosphotransferase that generates phosphatidylinositol 4-phosphate (PtdIns-4-P) from phosphatidylinositol and lipid A in Rhizobium leguminosarum -: A membrane-bound enzyme linking lipid A and PtdIns-4-P biosynthesis [J].
Basu, SS ;
York, JD ;
Raetz, CRH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (16) :11139-11149