CALIOP and AERONET aerosol optical depth comparisons: One size fits none

被引:133
作者
Omar, A. H. [1 ]
Winker, D. M. [1 ]
Tackett, J. L. [1 ,2 ]
Giles, D. M. [3 ,4 ]
Kar, J. [1 ,2 ]
Liu, Z. [1 ,5 ]
Vaughan, M. A. [1 ]
Powell, K. A. [1 ]
Trepte, C. R. [1 ]
机构
[1] NASA, Langley Res Ctr, Hampton, VA 23681 USA
[2] Sci Syst & Applicat Inc, Hampton, VA USA
[3] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[4] Sigma Space Corp, Greenbelt, MD USA
[5] Natl Inst Aerosp, Hampton, VA USA
关键词
Aerosol Optical Depth; AERONET; CALIPSO; CLOUD CONTAMINATION; ALGORITHM; CALIPSO; VALIDATION; PRODUCTS; NETWORK; PHOTOOXIDATION; VARIABILITY; EXTINCTION; RETRIEVAL;
D O I
10.1002/jgrd.50330
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We compare the aerosol optical depths (AOD) retrieved from backscatter measurements of the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) satellite with coincident Aerosol Robotic Network (AERONET) measurements. Overpass coincidence criteria of 2h and within a 40km radius are satisfied at least once at 149 globally distributed AERONET sites from 2006 to 2010. Most data pairs (>80%) use AERONET measurements acquired 30min of the overpass. We examine the differences in AOD estimates between CALIOP and AERONET for various aerosol, environmental, and geographic conditions. Results show CALIOP AOD are lower than AERONET AOD especially at low optical depths as measured by AERONET (500nm AOD<0.1). Furthermore, the median relative AOD difference between the two measurements is 25% of the AERONET AOD for AOD>0.1. Differences in AOD between CALIOP and AERONET are possibly due to cloud contamination, scene inhomogeneity, instrument view angle differences, CALIOP retrieval errors, and detection limits. Comparison of daytime to nighttime number of 5km x 60m (60m in the vertical) features detected by CALIOP show that there are 20% more aerosol features at night. We find that CALIPSO and AERONET do not agree on the cloudiness of scenes. Of the scenes that meet the above coincidence criteria, CALIPSO finds clouds in more than 45% of the coincident atmospheric columns AERONET classifies as clear.
引用
收藏
页码:4748 / 4766
页数:19
相关论文
共 56 条
[1]  
Anderson TL, 2003, J ATMOS SCI, V60, P119, DOI 10.1175/1520-0469(2003)060<0119:MVOTA>2.0.CO
[2]  
2
[3]  
[Anonymous], NASATM2005104606
[4]   An evaluation of satellite aerosol products against sunphotometer measurements [J].
Breon, Francois-Marie ;
Vermeulen, Anne ;
Descloitres, Jacques .
REMOTE SENSING OF ENVIRONMENT, 2011, 115 (12) :3102-3111
[5]  
Campbell J.R., 2012, ATMOS MEAS TECH DISC, V5, P2747, DOI DOI 10.5194/AMTD-5-2747-2012
[6]   Elevated cloud and aerosol layer retrievals from Micropulse Lidar Signal Profiles [J].
Campbell, James R. ;
Sassen, Kenneth ;
Welton, Ellsworth J. .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2008, 25 (05) :685-700
[7]   Tropical cirrus cloud contamination in sun photometer data [J].
Chew, Boon Ning ;
Campbell, James R. ;
Reid, Jeffrey S. ;
Giles, David M. ;
Welton, Ellsworth J. ;
Salinas, Santo V. ;
Liew, Soo Chin .
ATMOSPHERIC ENVIRONMENT, 2011, 45 (37) :6724-6731
[8]   Validation of MODIS aerosol optical depth retrieval over land -: art. no. 1617 [J].
Chu, DA ;
Kaufman, YJ ;
Ichoku, C ;
Remer, LA ;
Tanré, D ;
Holben, BN .
GEOPHYSICAL RESEARCH LETTERS, 2002, 29 (12) :MOD2-1
[9]   Model evaluation and scale issues in chemical and optical aerosol properties over the greater Milan area (Italy), for June 2001 [J].
de Meij, A. ;
Wagner, S. ;
Cuvelier, C. ;
Dentener, F. ;
Gobron, N. ;
Thunis, P. ;
Schaap, M. .
ATMOSPHERIC RESEARCH, 2007, 85 (02) :243-267
[10]   The role of iron and black carbon in aerosol light absorption [J].
Derimian, Y. ;
Karnieli, A. ;
Kaufman, Y. J. ;
Andreae, M. O. ;
Andreae, T. W. ;
Dubovik, O. ;
Maenhaut, W. ;
Koren, I. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (13) :3623-3637