Recurrence quantification analysis of spatio-temporal chaotic transient in a closed unstirred Belousov-Zhabotinsky reaction

被引:14
作者
Masia, M
Bastianoni, S
Rustici, M
机构
[1] Univ Sassari, Dipartimento Chim, I-07100 Sassari, Italy
[2] Univ Siena, Dipartimento Sci & Tecnol Chim & Biosistemi, I-53100 Siena, Italy
关键词
D O I
10.1039/b105833a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We analyse the transient spatio-temporal chaos that we observe in the Belousov-Zhabotinsky reaction performed in a closed unstirred batch reactor by recurrence quantification analysis (RQA). We characterize the chaotic transient by measuring the Lyapunov exponent and the Kaplan-Yorke dimension. The latter shows the fractality of the attractor. The importance of the coupling between hydrodynamics and kinetics for the onset of chaos is also shown.
引用
收藏
页码:5516 / 5520
页数:5
相关论文
共 32 条
[1]  
[Anonymous], 1985, Oscillations and Travelling Waves in Chemical Systems
[2]  
[Anonymous], 1993, CHAOS DYNAMICAL SYST
[3]  
BERGE P, 1984, ORDRE CHAOS
[4]   QUANTIFYING CHAOS AND TRANSIENT CHAOS IN NONLINEAR CHEMICALLY REACTING SYSTEMS [J].
COVENEY, PV ;
CHAUDRY, AN .
JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (10) :7448-7458
[5]   RECURRENCE PLOTS OF DYNAMIC-SYSTEMS [J].
ECKMANN, JP ;
KAMPHORST, SO ;
RUELLE, D .
EUROPHYSICS LETTERS, 1987, 4 (09) :973-977
[6]  
Gray P., 1994, Oscillations, Waves, and Chaos in Chemical Kinetics
[7]   Practical implementation of nonlinear time series methods: The TISEAN package [J].
Hegger, R ;
Kantz, H ;
Schreiber, T .
CHAOS, 1999, 9 (02) :413-435
[8]   Recurrence plots of experimental data: To embed or not to embed? [J].
Iwanski, JS ;
Bradley, E .
CHAOS, 1998, 8 (04) :861-871
[9]   Modelling complex transient oscillations for the BZ reaction in a batch reactor [J].
Johnson, BR ;
Scott, SK ;
Thompson, BW .
CHAOS, 1997, 7 (02) :350-358
[10]  
Kaplan Daniel, 1995, Understanding Nonlinear Dynamics