In Vivo Bio-Safety Evaluations and Diagnostic/Therapeutic Applications of Chemically Designed Mesoporous Silica Nanoparticles

被引:640
作者
Chen, Yu [1 ]
Chen, Hangrong [1 ]
Shi, Jianlin [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, 1295 Ding Xi Rd, Shanghai 200050, Peoples R China
关键词
mesoporous silica; In vivo; diagnosis; therapy; nanomedicine; INTENSITY FOCUSED ULTRASOUND; RESPONSIVE CONTROLLED-RELEASE; DRUG-DELIVERY SYSTEM; IRON-OXIDE NANOPARTICLES; MAGNETIC-RESONANCE; CANCER-THERAPY; PHOTODYNAMIC THERAPY; CONTRAST AGENTS; GUEST MOLECULES; HOLLOW SILICA;
D O I
10.1002/adma.201205292
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The remarkable progress of nanotechnology and its application in biomedicine have greatly expanded the ranges and types of biomaterials from traditional organic material-based nanoparticles (NPs) to inorganic biomaterials or organic/inorganic hybrid nanocomposites due to the unprecedented advantages of the engineered inorganic material-based NPs. Colloidal mesoporous silica NPs (MSNs), one of the most representative and well-established inorganic materials, have been promoted into biology and medicine, and shifted from extensive in vitro research towards preliminary in vivo assays in small-animal disease models. In this comprehensive review, the recent progresses in chemical design and engineering of MSNs-based biomaterials for in vivo biomedical applications has been detailed and overviewed. Due to the intrinsic structural characteristics of elaborately designed MSNs such as large surface area, high pore volume and easy chemical functionalization, they have been extensively investigated for therapeutic, diagnostic and theranostic (concurrent diagnosis and therapy) purposes, especially in oncology. Systematic in vivo bio-safety evaluations of MSNs have revealed the evidences that the in vivo bio-behaviors of MSNs are strongly related to their preparation prodecures, particle sizes, geometries, surface chemistries, dosing parameters and even administration routes. In vivo pharmacokinetics and pharmacodynamics further demonstrated the effectiveness of MSNs as the passively and/or actively targeted drug delivery systems (DDSs) for cancer chemotherapy. Especially, the advance of nano-synthetic chemistry enables the production of composite MSNs for advanced in vivo therapeutic purposes such as gene delivery, stimuli-responsive drug release, photothermal therapy, photodynamic therapy, ultrasound therapy, or anti-bacteria in tissue engineering, or as the contrast agents for biological and diagnostic imaging. Additionally, the critical issues and potential challenges related to the chemical design/synthesis of MSNs-based magic bullet by advanced nano-synthetic chemistry and in vivo evaluation have been discussed to highlight the issues scientists face in promoting the translation of MSNs-based DDSs into clinical trials.
引用
收藏
页码:3144 / 3176
页数:33
相关论文
共 248 条
[1]   Stimuli responsive polymers for biomedical applications [J].
Alarcón, CDH ;
Pennadam, S ;
Alexander, C .
CHEMICAL SOCIETY REVIEWS, 2005, 34 (03) :276-285
[2]   Supramolecular mechanisms in the synthesis of mesoporous magnetic nanospheres for hyperthermia [J].
Arcos, Daniel ;
Fal-Miyar, Vanesa ;
Ruiz-Hernandez, Eduardo ;
Garcia-Hernandez, Mar ;
Luisa Ruiz-Gonzalez, M. ;
Gonzalez-Calbet, Jose ;
Vallet-Regi, Maria .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (01) :64-72
[3]   Magnetic nanoparticles for drug delivery [J].
Arruebo, Manuel ;
Fernandez-Pacheco, Rodrigo ;
Ibarra, M. Ricardo ;
Santamaria, Jesus .
NANO TODAY, 2007, 2 (03) :22-32
[4]   Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future [J].
Arvizo, Rochelle R. ;
Bhattacharyya, Sanjib ;
Kudgus, Rachel A. ;
Giri, Karuna ;
Bhattacharya, Resham ;
Mukherjee, Priyabrata .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (07) :2943-2970
[5]   Biocompatibility of Mesoporous Silica Nanoparticles [J].
Asefa, Tewodros ;
Tao, Zhimin .
CHEMICAL RESEARCH IN TOXICOLOGY, 2012, 25 (11) :2265-2284
[6]  
Ashley CE, 2011, NAT MATER, V10, P389, DOI [10.1038/NMAT2992, 10.1038/nmat2992]
[7]   Magnetically Triggered Multidrug Release by Hybrid Mesoporous Silica Nanoparticles [J].
Baeza, Alejandro ;
Guisasola, Eduardo ;
Ruiz-Hernandez, Eduardo ;
Vallet-Regi, Maria .
CHEMISTRY OF MATERIALS, 2012, 24 (03) :517-524
[8]   Synthesis of well-dispersed layered double hydroxide core@ordered mesoporous silica shell nanostructure (LDH@mSiO2) and its application in drug delivery [J].
Bao, Haifeng ;
Yang, Jianping ;
Huang, Yan ;
Xu, Zhi Ping ;
Hao, Na ;
Wu, Zhangxiong ;
Lu, Gao Qing ;
Zhao, Dongyuan .
NANOSCALE, 2011, 3 (10) :4069-4073
[9]   A NEW FAMILY OF MESOPOROUS MOLECULAR-SIEVES PREPARED WITH LIQUID-CRYSTAL TEMPLATES [J].
BECK, JS ;
VARTULI, JC ;
ROTH, WJ ;
LEONOWICZ, ME ;
KRESGE, CT ;
SCHMITT, KD ;
CHU, CTW ;
OLSON, DH ;
SHEPPARD, EW ;
MCCULLEN, SB ;
HIGGINS, JB ;
SCHLENKER, JL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1992, 114 (27) :10834-10843
[10]   Advancement in carbon nanotubes: basics, biomedical applications and toxicity [J].
Beg, Sarwar ;
Rizwan, Mohammad ;
Sheikh, Asif M. ;
Hasnain, M. Saquib ;
Anwer, Khalid ;
Kohli, Kanchan .
JOURNAL OF PHARMACY AND PHARMACOLOGY, 2011, 63 (02) :141-163