Alteration of apoptotic protease-activating factor-1 (APAF-1)-dependent apoptotic pathway during development of rat brain and liver

被引:33
作者
Ota, K
Yakovlev, AG
Itaya, A
Kameoka, M
Tanaka, Y
Yoshihara, K [1 ]
机构
[1] Nara Med Univ, Dept Biochem, Kashihara, Nara 6348521, Japan
[2] Georgetown Univ, Sch Med, Dept Neurosci, Washington, DC 20007 USA
关键词
Apaf-1; brain; caspase; 9; 3; mitochondria pathway;
D O I
10.1093/oxfordjournals.jbchem.a003067
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Brain and liver extracts of rats at different stages after birth were examined for cytochrome c/dATP-dependent caspase (DEVDase)-activation (mitochondria pathway) in vitro. The caspase-activating activity in the brain extracts rapidly decreased after birth, reaching approximately 50 and 5%, at I and 2 weeks, respectively, of that in a 3-days-newborn sample, and essentially no caspase-activation was detected in the adult rat brain extracts. Such a dramatic change was not detected in the liver samples, suggesting that the observed abrogation of the cytochrome c-dependent mitochondria pathway after birth is a brain-specific event. In order to determine the factor(s) lacking in adult brain, we separately measured Apaf-1, procaspase 9, and pro-DEVDase activities using a supplementation assay. In adult brain, Apaf-1 activity was scarcely detected, while the tissue retained low but significant amounts of procaspase 9 (16% of that in the fetal tissue) and a pro-DEVDase (3.4%). In contrast, adult liver extracts retained relatively high levels of all of these factors. Immunoblot analyses clearly indicated that the expression of Apaf-1 and procaspase 3 is markedly suppressed within 4 weeks after birth in brain tissue while they are even expressed in adult liver. Considering these results together, we propose that, in the brain, the cytochrome c-dependent mitochondria pathway, which is essential for the programmed cell death during normal morphogenesis, is abrogated within 2-4 weeks after birth, whereas the pathway is still active in other adult tissues such as liver.
引用
收藏
页码:131 / 135
页数:5
相关论文
共 26 条
[1]   Human skeletal muscle cytosols are refractory to cytochrome c-dependent activation of type-II caspases and lack APAF-1 [J].
Burgess, DH ;
Svensson, M ;
Dandrea, T ;
Grönlund, K ;
Hammarquist, F ;
Orrenius, S ;
Cotgreave, IA .
CELL DEATH AND DIFFERENTIATION, 1999, 6 (03) :256-261
[2]   Caspase activation involves the formation of the aposome, a large (∼700 kDa) caspase-activating complex [J].
Cain, K ;
Brown, DG ;
Langlais, C ;
Cohen, GM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (32) :22686-22692
[3]   Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development [J].
Cecconi, F ;
Alvarez-Bolado, G ;
Meyer, BI ;
Roth, KA ;
Gruss, P .
CELL, 1998, 94 (06) :727-737
[4]   Matters of life and death: programmed cell death at Cold Spring Harbor [J].
Cory, S ;
Adams, JM .
BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER, 1998, 1377 (02) :R25-R44
[5]   Alteration of caspases and apoptosis-related proteins in brains of patients with Alzheimer's disease [J].
Engidawork, E ;
Gulesserian, T ;
Yoo, BC ;
Cairns, N ;
Lubec, G .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2001, 281 (01) :84-93
[6]   Caspase-3-dependent neuronal death in the hippocampus following kainic acid treatment [J].
Faherty, CJ ;
Xanthoudakis, S ;
Smeyne, RJ .
MOLECULAR BRAIN RESEARCH, 1999, 70 (01) :159-163
[7]   Differential requirement for Caspase 9 in apoptotic pathways in vivo [J].
Hakem, R ;
Hakem, A ;
Duncan, GS ;
Henderson, JT ;
Woo, M ;
Soengas, MS ;
Elia, A ;
de la Pompa, JL ;
Kagi, D ;
Khoo, W ;
Potter, J ;
Yoshida, R ;
Kaufman, SA ;
Lowe, SW ;
Penninger, JM ;
Mak, TW .
CELL, 1998, 94 (03) :339-352
[8]   Inhibition of interleukin 1 beta converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage [J].
Hara, H ;
Friedlander, RM ;
Gagliardini, V ;
Ayata, C ;
Fink, K ;
Huang, ZH ;
ShimizuSasamata, M ;
Yuan, JY ;
Moskowitz, MA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (05) :2007-2012
[9]   Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis [J].
Hu, YM ;
Benedict, MA ;
Ding, LY ;
Núñez, G .
EMBO JOURNAL, 1999, 18 (13) :3586-3595
[10]   Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking Caspase 9 [J].
Kuida, K ;
Haydar, TF ;
Kuan, CY ;
Gu, Y ;
Taya, C ;
Karasuyama, H ;
Su, MSS ;
Rakic, P ;
Flavell, RA .
CELL, 1998, 94 (03) :325-337