Subthreshold sodium current from rapidly inactivating sodium channels drives spontaneous firing of tuberomammillary neurons

被引:247
作者
Taddese, A [1 ]
Bean, BP [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Neurobiol, Boston, MA 02115 USA
关键词
D O I
10.1016/S0896-6273(02)00574-3
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
A role for "persistent," subthreshold, TTX-sensitive sodium current in driving the pacemaking of many central neurons has been proposed, but this has been impossible to test pharmacologically. Using isolated tuberomammillary neurons, we assessed the role of subthreshold sodium current in pacemaking by performing voltage-clamp experiments using a cell's own pacemaking cycle as voltage command. TTX-sensitive sodium current flows throughout the pacemaking cycle, even at voltages as negative as -70 mV, and this current is sufficient to drive spontaneous firing. When sodium channels underlying transient current were driven into slow inactivation by rapid stimulation, persistent current decreased in parallel, suggesting that persistent sodium current originates from subthreshold gating of the same sodium channels that underlie the phasic sodium current. This behavior of sodium channels may endow all neurons with an intrinsic propensity for rhythmic, spontaneous firing.
引用
收藏
页码:587 / 600
页数:14
相关论文
共 76 条
[1]   Persistent sodium channel activity mediates subthreshold membrane potential oscillations and low-threshold spikes in rat entorhinal cortex layer V neurons [J].
Agrawal, N ;
Hamam, BN ;
Magistretti, J ;
Alonso, A ;
Ragsdale, DS .
NEUROSCIENCE, 2001, 102 (01) :53-64
[2]   A REINTERPRETATION OF MAMMALIAN SODIUM-CHANNEL GATING BASED ON SINGLE CHANNEL RECORDING [J].
ALDRICH, RW ;
COREY, DP ;
STEVENS, CF .
NATURE, 1983, 306 (5942) :436-441
[3]  
ALZHEIMER C, 1993, J NEUROSCI, V13, P660
[4]   INACTIVATION OF SODIUM CHANNEL .2. GATING CURRENT EXPERIMENTS [J].
ARMSTRONG, CM ;
BEZANILLA, F .
JOURNAL OF GENERAL PHYSIOLOGY, 1977, 70 (05) :567-590
[5]   Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergic interneurons [J].
Bennett, BD ;
Callaway, JC ;
Wilson, CJ .
JOURNAL OF NEUROSCIENCE, 2000, 20 (22) :8493-8503
[6]  
Bergles DE, 1996, J NEUROSCI, V16, P572
[7]   Mechanisms underlying spontaneous oscillation and rhythmic firing in rat subthalamic neurons [J].
Bevan, MD ;
Wilson, CJ .
JOURNAL OF NEUROSCIENCE, 1999, 19 (17) :7617-7628
[8]   INACTIVATION OF SODIUM CHANNEL .1. SODIUM CURRENT EXPERIMENTS [J].
BEZANILLA, F ;
ARMSTRONG, CM .
JOURNAL OF GENERAL PHYSIOLOGY, 1977, 70 (05) :549-566
[9]   Adaptive regulation of neuronal excitability by a voltage-independent potassium conductance [J].
Brickley, SG ;
Revilla, V ;
Cull-Candy, SG ;
Wisden, W ;
Farrant, M .
NATURE, 2001, 409 (6816) :88-92
[10]   DIFFERENT VOLTAGE-DEPENDENCE OF TRANSIENT AND PERSISTENT NA+ CURRENTS IS COMPATIBLE WITH MODAL-GATING HYPOTHESIS FOR SODIUM-CHANNELS [J].
BROWN, AM ;
SCHWINDT, PC ;
CRILL, WE .
JOURNAL OF NEUROPHYSIOLOGY, 1994, 71 (06) :2562-2565