Ultrafast cooling of photoexcited electrons in gold nanoparticle-thiolated DNA conjugates involves the dissociation of the gold-thiol bond

被引:195
作者
Jain, PK [1 ]
Qian, W [1 ]
El-Sayed, MA [1 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biochem, Laser Dynam Lab, Atlanta, GA 30332 USA
关键词
D O I
10.1021/ja056769z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Using UV-visible extinction spectroscopy and femtosecond pump-probe transient absorption spectroscopy, we have studied the effect of femtosecond laser heating on gold nanoparticles attached to DNA ligands via thiol groups. It is found that femtosecond pulse excitation of the DNA-modified nanoparticles at a wavelength of 400 nm leads to desorption of the thiolated DNA strands from the nanoparticle surface by the dissociation of the gold-sulfur bond. The laser-initiated gold-sulfur bond-breaking process is a new pathway for nonradiative relaxation of the optically excited electrons within the DNA-modified gold nanoparticles, as manifested by a faster decay rate of the excited electronic distribution at progressively higher laser pulse energies. The experimental results favor a bond dissociation mechanism involving the coupling between the photoexcited electrons of the nanoparticles and the gold-sulfur bond vibrations over one involving the conventional phonon-phonon thermal heating processes. The latter processes have been observed previously by our group to be effective in the selective photothermal destruction of cancer cells bound to anti-epidermal growth factor receptor-conjugated gold nanoparticles.
引用
收藏
页码:2426 / 2433
页数:8
相关论文
共 51 条
[1]  
Ashcroft N.W., 1976, Solid State Physics
[2]   Ultrafast optical properties of gold nanoshells [J].
Averitt, RD ;
Westcott, SL ;
Halas, NJ .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1999, 16 (10) :1814-1823
[3]   Ultrafast electron dynamics in gold nanoshells [J].
Averitt, RD ;
Westcott, SL ;
Halas, NJ .
PHYSICAL REVIEW B, 1998, 58 (16) :10203-10206
[4]   Breaking individual chemical bonds via STM-induced excitations [J].
Avouris, P ;
Walkup, RE ;
Rossi, AR ;
Akpati, HC ;
Nordlander, P ;
Shen, TC ;
Abeln, GC ;
Lyding, JW .
SURFACE SCIENCE, 1996, 363 (1-3) :368-377
[5]  
BAUER C, 2004, J CHEM PHYS, V19, P15
[6]   Determination of the headgroup-gold(111) potential surface for alkanethiol self-assembled monolayers by ab initio calculation [J].
Beardmore, KM ;
Kress, JD ;
Gronbech-Jensen, N ;
Bishop, AR .
CHEMICAL PHYSICS LETTERS, 1998, 286 (1-2) :40-45
[7]   SURFACE ELECTRON PHONON ENERGY EXCHANGE IN SMALL METALLIC PARTICLES [J].
BELOTSKII, ED ;
TOMCHUK, PM .
INTERNATIONAL JOURNAL OF ELECTRONICS, 1992, 73 (05) :955-957
[8]   Electron dynamics in metallic nanoparticles [J].
Bigot, JY ;
Halté, V ;
Merle, JC ;
Daunois, A .
CHEMICAL PHYSICS, 2000, 251 (1-3) :181-203
[9]   Phonon- versus electron-mediated desorption and oxidation of CO on Ru(0001) [J].
Bonn, M ;
Funk, S ;
Hess, C ;
Denzler, DN ;
Stampfl, C ;
Scheffler, M ;
Wolf, M ;
Ertl, G .
SCIENCE, 1999, 285 (5430) :1042-1045
[10]   Ultrafast dephasing of surface plasmon excitation in silver nanoparticles:: Influence of particle size, shape, and chemical surrounding -: art. no. 257404 [J].
Bosbach, J ;
Hendrich, C ;
Stietz, F ;
Vartanyan, T ;
Träger, F .
PHYSICAL REVIEW LETTERS, 2002, 89 (25) :1-257404