Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries

被引:428
作者
Sun, YK [1 ]
Myung, ST
Kim, MH
Prakash, J
Amine, K
机构
[1] Hanyang Univ, Dept Chem Engn, Ctr Informat & Commun Mat, Seoul 133791, South Korea
[2] Iwate Univ, Grad Sch Engn, Dept Frontier Mat & Funct Engn, Morioka, Iwate 0208551, Japan
[3] IIT, Dept Chem & Environm Engn, Chicago, IL 60616 USA
[4] Argonne Natl Lab, Div Chem Engn, Electrochem Technol Program, Argonne, IL 60439 USA
关键词
D O I
10.1021/ja053675g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The high capacity of Ni-rich Li[Ni1-xMx]O-2 (M = Co, Mn) is very attractive, if the structural instability and thermal properties are improved. Li[Ni0.5Mn0.5]O-2 has good thermal and structural stabilities, but it has a low capacity and rate capability relative to the Ni-rich Li[Ni1-xMx]O-2. We synthesized a spherical coreshell structure with a high capacity (from the Li[Ni0.8Co0.1Mn0.1]O-2 core) and a good thermal stability (from the Li[Ni0.5Mn0.5]O-2 shell). This report is about the microscale spherical core-shell structure, that is, Li[Ni0.8Co0.1Mn0.1]O-2 as the core and a Li[Ni0.5Mn0.5]O-2 as the shell. A high capacity was delivered from the Li[Ni0.8Co0.1Mn0.1]O-2 core, and a high thermal stability was achieved by the Li[Ni(0.5)Nn(0.5)]O-2 shell. The core-shell structured Li[(Ni0.8Co0.1Mn0.1)(0.8)(Ni0.5Mn0.5)(0.2)]O-2/carbon cell had a superior cyclability and thermal stability relative to the Li[Ni0.8Co0.1Mn0.1]O-2 at the 1 C rate for 500 cycles. The core-shell structured Li[(Ni0.8Co0.1Mn0.1)(0.8)(Ni0.5Mn0.5)(0.2)]O-2 as a new positive electrode material is a significant breakthrough in the development of high-capacity lithium batteries.
引用
收藏
页码:13411 / 13418
页数:8
相关论文
共 35 条
  • [1] Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries
    Amatucci, GG
    Tarascon, JM
    Klein, LC
    [J]. SOLID STATE IONICS, 1996, 83 (1-2) : 167 - 173
  • [2] Thermal behavior of Li1-yNiO2 and the decomposition mechanism
    Arai, H
    Okada, S
    Sakurai, Y
    Yamaki, J
    [J]. SOLID STATE IONICS, 1998, 109 (3-4) : 295 - 302
  • [3] LIXNIO2, A PROMISING CATHODE FOR RECHARGEABLE LITHIUM BATTERIES
    BROUSSELY, M
    PERTON, F
    BIENSAN, P
    BODET, JM
    LABAT, J
    LECERF, A
    DELMAS, C
    ROUGIER, A
    PERES, JP
    [J]. JOURNAL OF POWER SOURCES, 1995, 54 (01) : 109 - 114
  • [4] Caruso F, 2001, ADV MATER, V13, P11, DOI 10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO
  • [5] 2-N
  • [6] Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach
    Caruso, F
    Spasova, M
    Susha, A
    Giersig, M
    Caruso, RA
    [J]. CHEMISTRY OF MATERIALS, 2001, 13 (01) : 109 - 116
  • [7] Effect of a ZrO2 coating on the structure and electrochemistry of LixCoO2 when cycled to 4.5 V
    Chen, ZH
    Dahn, JR
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2002, 5 (10) : A213 - A216
  • [8] Synthesis, thermal, and electrochemical properties of AlPO4-coated LiNi0.8Co0.1Mn0.1O2 cathode materials for a Li-ion cell
    Cho, J
    Kim, TJ
    Kim, J
    Noh, M
    Park, B
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (11) : A1899 - A1904
  • [9] Cho J, 2001, ANGEW CHEM INT EDIT, V40, P3367, DOI 10.1002/1521-3773(20010917)40:18<3367::AID-ANIE3367>3.0.CO
  • [10] 2-A