SUGAR-DEPENDENT1 encodes a patatin domain triacylglycerol lipase that initiates storage oil breakdown in germinating Arabidopsis seeds

被引:384
作者
Eastmond, PJ [1 ]
机构
[1] Univ York, Dept Biol, Ctr Novel Agr Prod, York YO10 5YW, N Yorkshire, England
基金
英国生物技术与生命科学研究理事会;
关键词
D O I
10.1105/tpc.105.040543
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Triacylglycerol hydrolysis (lipolysis) plays a pivotal role in the life cycle of many plants by providing the carbon skeletons and energy that drive postgerminative growth. Despite the physiological importance of this process, the molecular mechanism is unknown. Here, a genetic screen has been used to identify Arabidopsis thaliana mutants that exhibit a postgerminative growth arrest phenotype, which can be rescued by providing sugar. Seventeen sugar-dependent (sdp) mutants were isolated, and six represent new loci. Triacylglycerol hydrolase assays showed that sdp1, sdp2, and sdp3 seedlings are deficient specifically in the lipase activity that is associated with purified oil bodies. Map-based cloning of SDP1 revealed that it encodes a protein with a patatin-like acyl-hydrolase domain. SDP1 shares this domain with yeast triacylglycerol lipase 3 and human adipose triglyceride lipase. In vitro assays confirmed that recombinant SDP1 hydrolyzes triacylglycerols and diacylglycerols but not monoacylglycerols, phospholipids, galactolipids, or cholesterol esters. SDP1 is expressed predominantly in developing seeds, and a SDP1-green fluorescent protein fusion was shown to associate with the oil body surface in vivo. These data shed light on the mechanism of lipolysis in plants and establish that a central component is evolutionarily conserved among eukaryotes.
引用
收藏
页码:665 / 675
页数:11
相关论文
共 72 条
[1]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[2]  
Anderson C, 2002, J FOOD BIOCHEM, V26, P63, DOI 10.1111/j.1745-4514.2002.tb00050.x
[3]   CHARACTERIZATION OF THE LIPID ACYL HYDROLASE ACTIVITY OF THE MAJOR POTATO (SOLANUM-TUBEROSUM) TUBER PROTEIN, PATATIN, BY CLONING AND ABUNDANT EXPRESSION IN A BACULOVIRUS VECTOR [J].
ANDREWS, DL ;
BEAMES, B ;
SUMMERS, MD ;
PARK, WD .
BIOCHEMICAL JOURNAL, 1988, 252 (01) :199-206
[4]   Tgl4p and Tgl5p, two triacylglycerol lipases of the yeast Saccharomyces cerevisiae are localized to lipid particles [J].
Athenstaedt, K ;
Daum, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (45) :37301-37309
[5]   YMR313c/TGL3 encodes a novel triacylglycerol lipase located in lipid particles of Saccharomyces cerevisiae [J].
Athenstaedt, K ;
Daum, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (26) :23317-23323
[6]  
BAKER A, 2006, IN PRESS TRENDS PLAN
[7]   ASSIGNMENT OF 30 MICROSATELLITE LOCI TO THE LINKAGE MAP OF ARABIDOPSIS [J].
BELL, CJ ;
ECKER, JR .
GENOMICS, 1994, 19 (01) :137-144
[8]  
Bewley J.D., 2013, SEEDS, DOI DOI 10.1007/978-1-4899-1002-8_1
[9]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[10]   Storage oil breakdown during embryo development of Brassica napus (L.) [J].
Chia, TYP ;
Pike, MJ ;
Rawsthorne, S .
JOURNAL OF EXPERIMENTAL BOTANY, 2005, 56 (415) :1285-1296