Asymptotics of multibump blow-up self-similar solutions of the nonlinear Schrodinger equation

被引:17
作者
Budd, CJ [1 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
关键词
cubic nonlinear Schrodinger equation; blow-up; self-similar solutions; asymptotics;
D O I
10.1137/S0036139900382395
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper examines blow-up self-similar solutions of the cubic nonlinear Schrodinger equation close to the critical dimension d = 2. It gives a formal asymptotic theory for self-similar solutions with multiple maxima, in which the solution close to each maximum takes the form of a rescaled one-dimensional soliton. As d-->2, the maxima move to infinity and are centered close to the point -log(d-2)/(2pi/3- root3/4). However, the shape of the solution close to each maxima changes little in this limit, leading to an interesting nonuniform bifurcation. The formulae derived from the asymptotic theory are strongly supported by some numerical calculations.
引用
收藏
页码:801 / 830
页数:30
相关论文
共 20 条
[1]  
AKRIVIS GD, 1992, HELLENIC RES MATH IN, P421
[2]  
[Anonymous], 1983, VOLTERRA INTEGRAL DI, DOI DOI 10.1016/S0076-5392(08)62764-2
[3]  
ASCHER U, 1981, ACM T MATH SOFTWARE, V7, P209, DOI 10.1145/355945.355950
[4]   New self-similar solutions of the nonlinear Schrodinger equation with moving mesh computations [J].
Budd, CJ ;
Chen, SH ;
Russell, RD .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 152 (02) :756-789
[5]   SIMPLE ADAPTIVE GRIDS FOR 1-D INITIAL-VALUE PROBLEMS [J].
DORFI, EA ;
DRURY, LO .
JOURNAL OF COMPUTATIONAL PHYSICS, 1987, 69 (01) :175-195
[6]   Self-focusing in the perturbed and unperturbed nonlinear Schrodinger equation in critical dimension [J].
Fibich, G ;
Papanicolaou, G .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1999, 60 (01) :183-240
[7]   Adiabatic law for self-focusing of optical beams [J].
Fibich, G .
OPTICS LETTERS, 1996, 21 (21) :1735-1737
[8]  
FRAIMAN GM, 1986, SOV PHYS, V61, P773
[9]  
Hasegawa A., 1992, Optical Solitons in Fibers
[10]   SPATIAL STRUCTURE OF THE FOCUSING SINGULARITY OF THE NONLINEAR SCHRODINGER-EQUATION - A GEOMETRICAL ANALYSIS [J].
KOPELL, N ;
LANDMAN, M .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1995, 55 (05) :1297-1323