Biohydrogen production via biocatalyzed electrolysis in acetate-fed bioelectrochemical cells and microbial community analysis

被引:122
作者
Chae, Kyu-Jung [1 ]
Choi, Mi-Jin [1 ]
Lee, Jinwook [1 ]
Ajayi, F. F. [1 ]
Kim, In S. [1 ]
机构
[1] GIST, Dept Environm Sci & Engn, Kwangju 500712, South Korea
关键词
Bacterial community; Biocatalyzed electrolysis; Hydrogen; Microbial fuel cells;
D O I
10.1016/j.ijhydene.2008.05.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogen was efficiently produced via acetate oxidation using a two-chambered bioelectrochemical cell (BEC), a modified microbial fuel cell (MFC), in which a cathode was kept free of oxygen and the thermodynamic barrier overcome by augmenting the electrochemical potential achieved by bacteria with the addition of a small external voltage. The production of hydrogen gradually increased with increasing applied voltage from 0.1 to 1.0 V, reaching its maximum efficiency of 52.5% at 0.8 V, corresponding to a hydrogen yield of 2.1 mol per 1 mol acetate. The anodic loss of electrons was more detrimental compared to that of cathodic loss, especially with the higher applied voltage range. The cathode head-space gas consisted mainly of hydrogen (>96.6%), but with minor methane (2.5%) and carbon dioxide (0.9%) impurities diffused from the anode chamber. To maintain the purity or prevent the loss of the hydrogen produced, much concern is required for the control of CO2 and CH4 because these gases diffuse more readily through a Nafion 117 membrane than H-2. To produce hydrogen, the continuous augmentation of the circuit by an external voltage had no harmful effect on the bacterial viability but resulted in a remarkable change in the bacterial community. There was a substantial decrease in species diversity with a single emergent Pelobacter propionicus-like species in the BEC. Interestingly, Geobacter-like species were integral members of the bacterial consortia in an MFC and BEC. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:5184 / 5192
页数:9
相关论文
共 23 条
[1]   Electrode-reducing microorganisms that harvest energy from marine sediments [J].
Bond, DR ;
Holmes, DE ;
Tender, LM ;
Lovley, DR .
SCIENCE, 2002, 295 (5554) :483-485
[2]   Electricity production by Geobacter sulfurreducens attached to electrodes [J].
Bond, DR ;
Lovley, DR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (03) :1548-1555
[3]   Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells [J].
Chae, Kyu Jung ;
Choi, Mijin ;
Ajayi, Folusho F. ;
Park, Wooshin ;
Chang, In Seop ;
Kim, In S. .
ENERGY & FUELS, 2008, 22 (01) :169-176
[4]  
Cheng S, 2007, P NATL ACAD SCI USA, V104, P18871, DOI 10.1073/pnas.0706379104
[5]  
Crow D.R., 1998, PRINCIPLES APPL ELEC
[6]   Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments [J].
Holmes, DE ;
Bond, DR ;
O'Neill, RA ;
Reimers, CE ;
Tender, LR ;
Lovley, DR .
MICROBIAL ECOLOGY, 2004, 48 (02) :178-190
[7]   Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell [J].
Kim, BH ;
Park, HS ;
Kim, HJ ;
Kim, GT ;
Chang, IS ;
Lee, J ;
Phung, NT .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2004, 63 (06) :672-681
[8]   Effect of low pH on the activity of hydrogen utilizing methanogen in bio-hydrogen process [J].
Kim, IS ;
Hwang, MH ;
Jang, NJ ;
Hyun, SH ;
Lee, ST .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2004, 29 (11) :1133-1140
[9]  
Kinoshita K., 1992, Electrochemical Oxygen Technology
[10]   Biohydrogen production: prospects and limitations to practical application [J].
Levin, DB ;
Pitt, L ;
Love, M .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2004, 29 (02) :173-185